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The contents of this report reflect the views of the author who is responsible for the facts and
the accuracy of the data presented. The contents do not necessarily reflect the official views of
the South Carolina Department of Transportation or Federal Highway Administration. This report
does not constitute a standard, specification, or regulation.

The State of South Carolina and the United States Government do not endorse products or
manufacturers. Trade or manufacturer’s names appear herein solely because they are
considered essential to the object of this report.

[Piratla and Le] iii



Acknowledgments

The project team acknowledges the support and guidance of the SCDOT’s project steering
committee led by Mr. Brad Latham. Other committee members include Mr. Craig Winn, Mr. Brian
Dix, Mr. Tyke Redfearn, Mr. Hiram Sipes, and Ms. Shaquaisha Woods. We also acknowledge the
input of representatives from various state departments to our survey conducted as part of this
study. We thank Dr. Da Li and Ms. Sara Sadralashrafi for their contributions to this study. Finally,
we also acknowledge the support of SCDOT'’s research staff Mr. Terry Swygert and Ms. Jade
Watford.

[Piratla and Le] iv



Executive Summary

Construction needs far exceed the budget limitations of South Carolina Department of
Transportation (SCDOT) like many other state highway agencies (SHAs). As a result, SCDOT is
required to prioritize construction projects based on benefit to cost ratio. In this regard, early-
stage cost estimates are significant for project feasibility. Planning phase is typically when these
early cost estimates are developed to evaluate project feasibility. The challenge, however, is that
no design detail is available at this stage, and the cost estimates would have to be based on broad
project type, size, and location features. Sometimes, these estimates may need to be developed
rapidly which is another challenge. While SCDOT currently develops and uses planning-stage cost
estimates, they are not consistently done across the state and the procedure has not been
recently evaluated. This research study developed a user-friendly preliminary cost estimating
tool (PCET) for rapidly generating planning and early-design cost estimates for transportation
projects.

The PCET tool is developed using linear regression and machine learning models to generate both
deterministic and probabilistic cost estimates based on very few project features. Widening,
bridge replacement, and intersection improvement projects are prioritized in this study. These
prediction models are trained using bid data collected from over 320 past and current
transportation projects managed by SCDOT. Project size is a key input, and it is characterized
through length, number of (added) lanes, (added) shoulder width, and average side slope.
Another key input is the year of letting which is significant because of the need to incorporate
cost inflation. Using a linear regression model, the PCET tool can predict cost estimates with
accuracy ranging from about 64% to 81% across the three project types. Further validation using
new project data would increase confidence in the PCET tool and its utility for SCDOT.
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1. Introduction

The South Carolina Department of Transportation (SCDOT) is responsible for the systematic
planning, construction, maintenance, and operation of the fourth largest state highway system
inthe U.S. (SCFOR, 2014). SCDOT invests hundreds of millions of dollars annually in maintenance,
rehabilitation, and new construction of its statewide transportation infrastructure. As with any
state highway agency (SHA), the construction needs exceed the budget limitations, which
mandates that SCDOT prioritizes transportation project needs based on benefit/cost
considerations. It is important to use every penny as wisely as possible. In such context, an early-
stage cost estimate is imperative for evaluating the feasibility of large construction projects.
Typically, earliest cost estimates are prepared during the planning phase of the project
development when minimal scope and design details are available. It is a great challenge to
prepare a cost estimate without many design details and it would naturally be somewhat
inaccurate. The cost estimate is bound to change as the design gets completed and the
construction timeline becomes more tangible. SHAs typically build a significant amount of
contingency in these early cost estimates as a percentage of base estimate cost to account for
the vast number of unknowns.

Nevertheless, these early estimates are important and often inform the project budgets that
need to be maintained throughout the project development phase. If the project is considerably
underestimated, there would be significant cost overruns in the later phases of the project
development thereby delaying or limiting the investment into other prioritized projects. It is also
possible that the project may lose support for further advancement at the stage of design
completion due to lower benefit to cost ratio. It is however not uncommon for SHAs to
underestimate project costs in the planning phase to keep the project alive, and this
phenomenon is often referred as “optimism bias” (Jennings, 2012). In fact, it is statistically proven
that pre-design cost estimates are deliberately low, and that this has led to 9 out of 10 projects
ultimately having cost overruns (Gardener et al.,, 2017). Supporting this claim, another study
reported that the final construction costs were 46% higher than the estimated costs at the time
of programming based on analysis of data from Montana DOT (Alavi and Tavares, 2009). On the
other hand, if the project is considerably overestimated, it would prevent the precious federal-
aid money from being allocated to other timely needed high-priority projects (FHWA, 2015). It is
therefore imperative to use a sophisticated estimating approach to systematically develop
conceptual or preliminary estimates during the planning phase by rationally assigning
contingency costs to account for the unknowns (Anderson et al., 2007). Furthermore, the time
taken for many projects to mature from the planning phase through the letting phase can be
multiple years, and this warrants the consideration of the risks associated with differed market
conditions and price inflation.



SCDOT does not currently have an established agency-wide procedure for rapidly developing
preliminary cost estimates for the variety of construction projects they plan and manage. There
are also no agency-wide policies to account for differed market conditions and price inflation
while preparing cost estimates. Addressing these gaps, this project developed a statistical cost
estimating tool, namely preliminary cost estimating tool (PCET), to be useful in the planning and
early design phases of transportation projects. The PCET tool is developed based on the empirical
bid databases maintained by SCDOT in conjunction with accounting for cost inflation modeled
using a state-level highway construction cost index (HCCI). The developed cost estimating tool
will predict the range of total project cost based on a broadly defined scope with limited project
characteristics identified. A survey of SHAs is also undertaken as part of this research study to
support the cost estimating model development effort. The cost estimating tool is created in such
a way that it can be easily updated to include data from additional projects in the future. The
user-friendly tool developed in this project will enable SCDOT in rapidly developing a range of
preliminary cost estimates with associated probabilities based on few project inputs. This ability
will enable SCDOT to quickly respond to feasibility questions on large projects that may be
considered for funding. The vision is to host the developed user-friendly tool on the SCDOT’s
Preconstruction Support web page for the project managers to use.

1.1 Research Objectives

The overarching goal of this project is to provide technical guidance to SCDOT in rapidly
performing preliminary cost estimates of transportation projects with minimal design completed
through a user-friendly computer program. The accuracy of the cost estimate is expected to
improve with more design and scope data considered, and this accuracy would be reflected in
the computer program through sophisticated statistical measures for SCDOT to be fully aware of
the risk involved in using the preliminary cost estimates. The following are the specific objectives
of this project:

1. Synthesize current state-of-the-art and state-of-the-practice in developing preliminary
cost estimates for transportation projects.

2. ldentify the highway construction cost index (HCCI) in South Carolina and demonstrate its
use in accommodating cost inflation in transportation project estimates.

3. Develop, demonstrate, and validate a risk-based cost estimating approach for
transportation projects that can be used in planning and preliminary design phases of the
project development.

4. Develop a user-friendly Microsoft Excel-based computer program that will assist SCDOT
personnel in generating rapid preliminary cost estimate ranges along with confidence
levels using minimal design details.
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1.2 Study Methodology

To accomplish the research objectives identified previously, six distinct tasks were conducted as
illustrated in Figure 3. In Task-1, an extensive literature review was conducted to identify current
state-of-the-art strategies for cost estimating focused on both preliminary and early-design
estimating. In Task-2, several state DOTs in the U.S. were surveyed on their practices with respect
to the type of approaches and tools used for developing preliminary cost estimates. In Task-3,
historical bid data was collected for several past and ongoing construction projects of three types
(i.e., widening, bridge replacement, and intersection improvements) to develop a comprehensive
database that was later used for statistical analysis in the next task. In Task-4, data collected in
Task-3 was analyzed using state-of-the-art statistical techniques in conjunction with the findings
of the survey conducted in Task-2 to develop insights into generating cost estimates with minimal
design detail and maximum accuracy possible. In Task-5, a computational tool was developed
which embedded the statistical models from Task-4. The final task (Task-6) entailed preparation
and submission of the final report that describes the study objectives, methodology and results,
and highlights specific recommendations to SCDOT. Figure 1 highlights the value produced
through all these different tasks in this study.

Figure 1. Value Offered Through the Proposed Study
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1.3 Significance of this Research Study

This study explored multiple cost estimating approaches including a systematic risk-based
approach for SCDOT to use. Although many studies were previously completed on this topic,
those cost estimating models would not be readily suitable for SCDOT because the data used
from different agencies may not have captured the unique challenges and policies implemented
by SCDOT. Furthermore, the prevailing state of practice across state highway agencies are
somewhat irrational in terms of assigning contingency costs in estimates and building false hopes
with intentionally underestimated costs in the planning and scoping stages of project
development. A more rational approach would be to assign contingency costs commensurate
with the risk involved. Furthermore, adjustment of historic prices and accounting for inflation are
loosely practiced across state highway agencies, and inconsistently implemented at SCDOT. This
study presented a more systematic approach to account for inflation. Intellectually, the cost
estimating approaches explored are sophisticated with potential for advancement of knowledge
that would be beneficial to state highway agencies beyond SCDOT. The findings and the
developed cost estimating tool will help SCDOT in rapidly producing preliminary cost estimates
that are probabilistic and more accurate through a customized user-friendly computer tool.

[Piratla and Le] 4



2. Literature Review

A comprehensive review of literature was completed on the topic of preliminary cost estimating
for transportation projects. Table 1 presents the list of most relevant studies we reviewed before
the project work began. In addition, we have also reviewed cost estimating manuals of a few
state DOTs including Connecticut, Montana, New Jersey, Washington, and Nevada. Additionally,
we have reviewed a few graduate student theses and many conference papers.

Table 1. List of Most Relevant Studies Reviewed

Citation Literature Type Theme/Focus
Alavi and Tavares (2009) Project Report Recommendations for Highway Project Cost Estimation
(Montana DOT) Approaches

Anderson et al. (2009)

Project Report
(Texas DOT)

Construction Unit Cost Development

Van Dyke et al. (2017)

Project Report
(Kentucky)

Review of Initial Project Estimates

Gransberg et al. (2017)

Project Report
(Montana DOT)

Top-Down Cost Estimating Using Artificial Neural Networks

Liu et al. (2011)

Project Report
(NCDOT)

Estimating Preliminary Engineering Costs

Anderson et al. (2007)

NCHRP Report

Fundamental Estimating Guidance

Paulson et al. (2008)

Project Report
(NCHRP-Funded)

Cost Estimate Management Process Improvements

Skolnik (2011)

Project Report
(NCHRP-Funded)

Price Indexing in Transportation Contracts

Pirece et al. (2012)

Project Report

Price Indexing and Cost Adjustments Clauses

(SCDoT)
Turochy et al. (2001) Project Report Planning Stage Cost Estimating
(Virginia)
AASHTO (2013) Guidebook Cost Estimating Guidebook

Adel et al. (2016)

Journal Paper

Parametric Cost Estimating

Asmar et al. (2011)

Journal Paper

PERT-like Cost Estimating Model

Bell and Kaminsky (1987)

Journal Paper

Database-Driven Cost Estimating

Chou (2009)

Journal Paper

Linearized Cost Estimating Model

Chou and O’Connor (2007)

Journal Paper

Internet-Based Highway Cost Database

Chou et al. (2006)

Journal Paper

Quantity-Based Estimating Approach

Fragkakis et al. (2010)

Journal Paper

Estimating Using Regression and Bootstrapping

Gardener et al. (2016)

Journal Paper

Reducing Data Collection Efforts for Conceptual Estimates

Gardener et al. (2017)

Journal Paper

ANNs with Bootstrap Sampling

Harper et al. (2014)

Journal Paper

Performance Measures for Cost Estimating

Hollar et al. (2013)

Journal Paper

Estimating Preliminary Engineering Costs for Bridges

Karaca et al. (2020)

Journal Paper

Improved Accuracy of Preliminary Estimates

Liu et al. (2013)

Journal Paper

Estimating Preliminary Engineering Costs

Petroutsatou et al. (2012)

Journal Paper

Tunnel Project Cost Estimation Using Neural Networks

Shane et al. (2009)

Journal Paper

Cost Escalation Factors
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2.1 Literature Background and Overview

A cost estimate is the probable cost of a construction project. It serves two main purposes: (1)
determine the probable project cost to evaluate feasibility and allocate funds, and (2) control the
budget as the project is developed further and gets to letting. Three different types of estimates
are typically developed and used in the context of construction projects. The first type is
conceptual or preliminary estimate which is prepared with minimal design detail during the
planning phase to serve the purposes of feasibility evaluation and rough budget establishment,
as mentioned in Table 2. These estimates are expected to be less accurate. Most agencies use
simple Microsoft Excel spreadsheets for preparing planning level estimates. Parametric estimates
based on $/SF or $/lane mile are commonly employed. Examples of computer programs and
spreadsheets developed for planning level estimates include the VDOT’s Planning Cost Estimate
Spreadsheet, Comparative Bridge Costs of CALTRANS, and Concept Cost Estimate Form of UDOT
(Anderson et al., 2009). The preliminary estimates are especially challenging to develop given the
vast number of unknowns in the earlier project stages. This difficulty is demonstrated in the
AASHTO's Practical Guide to Cost Estimating (2013) manual, which provides a classification of
estimates used in different transportation project development phases and suggests acceptable
accuracies for the different estimates. Table 2 presents a detailed classification of cost estimates.
As can be observed from Table 2, the acceptable estimate accuracy in the planning phase is -40%
to +100% at best from the initial cost estimate to the final construction cost. Byrnes (2002)
reported that SHAs add a contingency ranging from 5-45% depending on project type and
uncertainty; similar contingency factors were also reported by Turochy et al. (2001).

The second type is design estimate which is prepared as the design is developed to ensure the
project remains within the initially established budget. Design estimates during the scoping phase
(refer to Table 2) are used to set the baseline costs and program the project. The design process
is typically iterative and cost estimates are important criteria during the design. The design
estimates continue to be used in the preliminary design and final design phases of the project, as
can be noted from Table 2. Design estimates are more accurate than preliminary estimates as
more design detail is available and accounted for in it. Parametric estimating and historic bid-
price based estimating are common approaches for design estimating. Some agencies, however,
use cost-based estimating using historic production rates, material, labor and equipment cost
data for the critical (about 20%) pay items while using historic bid-based approach for the
remaining (about 80%) pay items. Many agencies use sophisticated computer programs such as
Estimator or Cost Estimating System (CES) for performing estimates during the design phase. An
engineer’s estimate is prepared during the final plans, specifications, and estimate (PS&E) phase.
The engineer’s estimate is crucial for committing the funds, inviting, and evaluating contractor
bids. The design is completed at this stage and the engineer’s estimate is expected to account for
each cost aspect of the project.
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Table 2. AASHTO's Recommended Cost Estimate Classification (AASHTO, 2013)

Development | Scope/Design . Estimate
Phase Completion Estimate Purpose Popular Methodology Accuracy
Preliminary Estimate: . . . o
0-2% Estimate Potential Funds Parametric Estimating -50% to
(Range) +200%
Plannin Needed (20-year plan)
& Preliminary Estimate: . . .
. Parametric or Historic -40% to
1-15% Prioritize Needs for Long Bid-Based (Range) +100%
Range Plans (10-year plan) & ?
. Design Estimating: Establish | Historic Bid-Based or -30% to
_20N0o
Scoping 10-30% a Project Baseline Cost Cost-Based (Range) +50%
Historic Bid-Based or
Preliminary 30-90% Design Estimating: Manage Cost-Based (Smaller -10% to
Design ? Budgets Against Baseline Range or Point +25%
Estimate)
. , PS&E Estimating: Bid Cost-Based or Historic 0
Final Design 90-100% Evaluation and Funds Bid-Based (Point % to
(PS&E) . . +10%
Allocation Estimate)

The third type of estimate is the detailed estimate which is typically developed by contractors
after thoroughly considering the constructability aspects of the designed project. Detailed
estimates are used for bidding on projects, and it is not uncommon to see deviation between
detailed estimates and engineer’s estimates. Detailed estimates are typically prepared based on
the quantities of different work items, anticipated production rates, labor, material and
equipment costs, and it is important for the estimator to be knowledgeable about the
construction process to prepare an accurate detailed estimate. Some design estimates may also
be prepared in the same manner as the detailed estimates considering production rates and
constructability aspects.

As one would expect, the contingency costs which account for the unknowns diminish as the
project scope and design details become available in the later phases of the project development.
Figure 2 illustrates how the base estimate grows and contingency costs diminish as the design
details become available through the later project development phases.
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Figure 2. Application of Contingency in Cost Estimates Over the Project Development Period

(Adopted from Van Dyke et al., 2017)
Two crucial requirements of developing cost estimates are historic bid prices and prevailing
market conditions (Anderson et al., 2007). Historic data is often characterized in two ways: (a)
unit price data — which is the historic unit price data for pay items most relevant to the
prospective project; and (b) cost-based data — which includes production rates, crew sizes,
material, labor, equipment and contractor markup costs. The cost-based approach is used for
detailed estimating, as described previously, and it requires the conceptualization of the entire
construction process. While the cost-based approach may be more accurate as it closely
resembles the contractor’s estimating approach, it is complicated, time-consuming, detail-
oriented, and requires extensive construction knowledge. The historic unit price-based approach
is most often used, especially in the earlier phases (scoping and preliminary design) of project
development, as can be seen from Table 2. In this approach, simple unit price averages or
weighted (by quantity) averages from past data are used as unit prices for future project for
similar bid items. The historic unit price-based approach is proven to work best when multiple
(three to be specific) lowest bids are considered for each past project as opposed to a single
lowest bid (Schexnayder et al., 2003). Furthermore, parametric estimates which are simply based
on itemized cost or entire project cost on per lane mile (or per sq. ft. where appropriate) of work
basis are more commonly used in the planning phase estimates. The historic unit price data needs
to be adjusted to suit project characteristics (i.e., complexity, region/location, size, etc.) and
market conditions (i.e., bidding environment, economic situation, and inflation). Many agencies
do not have formal guidelines for how to make these adjustments and it is often left to the
individual estimator’s engineering judgement (Anderson et al., 2009). Some SHAs developed own
highway construction cost indices to track and account for inflation following Federal Highway
Administration (FHWA)’s guidance.
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Highway Construction Cost Indices (HCCI) are a critical measure of the purchasing power of road-
building resources for highway agencies (Guerrero 2003; White and Erickson 2011). It represents
actual contract bids made by contractors within a certain time-period (i.e., yearly) calculated as
a function of unit bid prices and quantities of various bid items used in highway construction.
Since HCCI is computed using contract bid prices rather than contract completion, it does not
include escalated cost overrun due to unexpected seasonal events (e.g., flooding). Thus, it is
considered a better tool to measure the overall construction market conditions. For this reason,
state departments of transportation (DOTs) have widely used it to monitor the inflation in
highway construction and reasonably forecast the preliminary expenditure need for a highway
project (White and Erickson 2011; Guerrero 2003).

The concept of HCCI was first introduced by the FHWA in 1933. The index was originally named
the Bid Price Index (BPI) which was later replaced with the term National HCCI (NHCCI) in 1991
(Whited and Alsamadani 2011). Subsequently, some DOTs have adopted FHWA’s methodology
to develop their state-level HCCls (Wilmot and Cheng 2003). Currently, at least 21 DOTs compute
their state-level HCCls, but most of the current HCCI calculation methods adopted by DOTs are
not sophisticated enough to assure that an HCCI can be used as a reliable indicator of the
changing market conditions (Shrestha et al., 2016). One of the reasons is the use of a significantly
insufficient sample size of bid items in HCCI calculation. Currently, State DOTs use as little as 14%
to below 50% of the total construction bid prices to calculate their state-level HCCI (Shrestha et
al., 2016). Moreover, current methodologies typically produce only one overall HCCI as a
representative index to indicate the entire state’s highway construction market condition.
However, highway construction costs are heavily affected by the availability of local materials,
equipment, and even specialty contractors. The project size and quantity of work would also
significantly affect construction methods and productivities which are directly associated with
project costs. The unique characteristics of highway construction and business environments in
South Carolina require the development of a customized HCCI that correctly represents the
market conditions and trends based on the state's local regions, project sizes, and project types.
This study addressed this need by developing an advanced technique for determining HCCls for
different major types of highway construction projects and regions in South Carolina.

Finally, most state agencies use point preliminary estimates with a contingency assigned as a
percentage of project cost. The point estimates result in a single cost value to be used for
decision-making. While it is commonly known that the accuracy of these single value estimates
in the planning and scoping phases is not great, it may lead to false sense of confidence among
some project stakeholders as it does not indicate a confidence measure nor does it indicate the
potential for cost growth (Garderner et al., 2017; AASTHO, 2013; Chelst and Canbolt, 2012). One
concern is the lack of a rational approach for assigning the contingency costs dependent on the
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risk involved. A risk-based cost estimating approach would address this concern. Providing an
estimate range is believed to capture the realistic possibility of variable cost as dependent on the
unknowns (Gardener et al., 2017). Indeed, FHWA (2007) in their cost estimating guidance allows
SHAs to express their preliminary estimates as a range with indicated confidence levels. In 2005,
Molenaar developed a stochastic cost estimating approach for Washington DOT for projects
costing over $100 million, and the SHA has been successfully using that approach since then.
Molenaar opined that the risk-based stochastic method better conveyed uncertain nature of
project costs at the planning level (Molenaar, 2005). Gardener et al. (2017) developed a
bootstrap sampling based stochastic cost estimating approach based on historic bid price data
where planning level estimates are presented as a range along with probability values.

2.2 Synthesis of Specific Studies

Numerous studies emphasize the significance of accurate cost estimation in transportation
projects.

The research of Alavi & Tavares, (2009) addresses the prevalent issue of cost overruns in
transportation infrastructure projects. The literature review highlights how cost overruns have a
wide range of effects, such as modifications to project schedules, a narrowed scope, longer
construction times, and a decrease in public trust. The research examines effective methods
employed by other organizations and suggests improvements for the Montana Department of
Transportation (MDT). These include creating a section dedicated to cost estimation, updating
unit cost data regularly, creating a thorough manual, and implementing quality control and risk
management programs. Future studies might investigate the implementation challenges and
practical difficulties that may develop when implementing these strategies; however, a thorough
examination of any potential constraints linked to the suggested approaches still needs to be
completed in this report. Furthermore, investigating the recommended strategies' long-term
efficacy would advance the current understanding of how they mitigate cost overruns in
transportation projects (Alavi & Tavares, 2009).

The study by Anderson et al., (2009) investigates whether state highway agencies (SHAs) set
project unit costs, including construction and maintenance. The study employs interviews with
SHAs and a thorough online survey to determine standard practices. It demonstrates the need
for established documented procedures for adjusting unit costs in response to project
characteristics and market conditions. The short-term recommendations involve utilizing
instruments like an estimator and a site manager database and considering cost-based estimating
for specific items (S. Anderson et al., 2009). However, long-term recommendations include
developing guidelines for adjusting unit prices and evaluating cost-based estimating for project
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phases. A drawback noted in the study is that the recommendations are based on observations
and characteristics among SHAs; as such, it emphasizes the need for more comprehensive and
systematic processes in unit cost generation across agencies. The report also recommends
considering the work necessary to implement cost-based estimation into practice and looking
into alternative information systems for adequate access to unit costs, which emphasizes the
need for more research on the real-world challenges and system integration difficulties related
to these recommendations (S. Anderson et al., 2009).

With a specific focus on the Kentucky Transportation Cabinet (KYTC), the article of Van Dyke et
al., (2017) offers a thorough analysis of the methods and procedures employed by SHA for project
cost estimation. SHAs usually employ a stepped approach to estimating, beginning with high-
level programming, and ending with precise post-approval estimates. The article highlights the
significance of straightforward, consistent procedures frequently made possible by proprietary
or commercial software to ensure correctness and promote quick learning for new employees.
Precise estimations require the incorporation of project-specific contingencies that consider
environmental and geographical considerations. However, the paper acknowledges many
difficulties, including the complicated nature of the estimation procedure, the requirement for
multidisciplinary cooperation, and the dependence on historical data. Potential cost error,
particularly in time-constrained scenarios, and inadequate access to and storage of previous data
for more accurate projections are among the limitations. There may be discrepancies in how
procedures are used, as evidenced by the different estimation techniques used by KYTC districts.
The end of the paper emphasizes the significance of a systematic and transparent approach to
estimating for successful project delivery (Van Dyke et al., 2017).

The article of Gransberg et al.,, (2017) thoroughly investigates how top-down estimating
techniques—more significantly, using multiple regression models and artificial neural networks
(ANN)—may improve the precision of building cost estimates. The study compares the predicted
accuracy of the proposed methods with the agency's current practices. It offers a logical method
for variable selection to address the challenges the MDT faces in early estimating and budgeting.
Significant increases in the accuracy of predictions are found in the study, especially for new
construction and bridge replacement projects, indicating advantages for more effective agency
funding allocation. The supplied excel spreadsheet tool makes it easier to put the suggested
approach into practice by providing easily accessible cost projections at the budgeting stage.
Limitations may arise in the generalizability of the findings to diverse transportation agencies and
project types, and the article suggests future research areas, such as integrating early project-
level data and tailoring estimating systems for increased efficiency (Gransberg et al., 2017).
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The research of Liu et al., (2011) addresses preliminary engineering (PE) cost and schedule
estimation for transportation projects, emphasizing the North Carolina Department of
Transportation (NCDOT). The study develops statistical models employing multiple linear
regression, hierarchical linear models, Dirichlet process linear models, and multilevel Dirichlet
process linear models by evaluating data from bridge and roadway projects. The research shows
that project characteristics, such as location, project scope, and expected construction costs,
impact how accurately PE cost ratios predict outcomes. The study contributes by offering an
excel-based user interface for precise and effective PE cost estimations. Limitations include
difficulties obtaining data, especially for projects involving roads, and difficulty interpreting
outcomes from multilayer models (Liu et al., 2011).

According to the manual of Anderson et al., (2007), which overviews eight worldwide strategies
and guidelines for managing and applying cost estimating. Although the article offers insightful
information, it needs case studies or empirical data to support the suggested solutions' actual
application in real-world situations. The focus on highway projects may limit generalizability to
other construction environments, and the issues revealed call for additional investigation into
mitigation techniques. The report should cover the economic and organizational consequences
of implementing the suggested adjustments in greater detail (S. D. Anderson et al., 2007).

Comprehensive guidelines for improving cost estimating methods in SHA illustrated by Paulsen
et al., (2008). The authors provide valuable guidance for the planning, scoping, and design stages,
stressing the value of regular evaluations of estimates, cooperation with support offices, and
comprehensive site assessments. Nevertheless, the article would benefit from case studies that
show successful application and greater empirical assurance of the recommended guidelines.
The organizational and economic consequences of the proposed changes that limit the article's
depth also require controversy. The difficulties of incorporating these recommendations into SHA
procedures should be investigated in future studies, considering institutional resistance and
resource limitations (Paulsen et al., 2008).

A comprehensive study on "Price Indexing in Transportation Construction Contracts" by Skolnik,
(2011) investigates how SHAs and contractors currently use and view Price Adjustment Clauses
(PACs). According to the report, PACs are widely used, mainly for fuel and liquid asphalt, and are
thought to have advantages like more bidders and stable markets. Nonetheless, the research
recognizes certain obstacles, such as the burden of administrative work and resistance from
contractors. Utilizing statistical models, the investigation evaluates the effect of PACs on bid
prices, yielding findings that could be more compelling. Despite constraints on extrapolating
outcomes and difficulties in measuring PAC efficacy, the research suggests utilizing PAC to
improve estimation accuracy and mitigate industry hazards (Skolnik, 2011).
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Unit price adjustment clauses (PACs) for construction materials were the subject of a thorough
investigation by Pierce et al., (2012), who concentrated on the South Carolina Department of
Transportation (SCDOT). In addition to investigating the viability of establishing PACs for ten more
materials—including steel reinforcement—the research evaluates the procedural and financial
ramifications of the current PACs for fuel and asphalt. The study acknowledges the widespread
use of PACs nationwide and highlights their function in reducing financial risks related to
variations in material costs during construction contracts. On the other hand, it recognizes the
regional variations in PAC availability and draws attention to the many requirements
encountered in clauses, such as trigger values and adjustment terminology. The limitations of the
research include the need for a standardized approach to PACs across states and the complexities
involved in developing clauses for diverse materials, particularly steel (Pierce et al., 2012).

The study of Turochy et al., (2001) investigate the cost estimating methodologies employed by
SHA during the planning stage of highway project development. The report notes that SHAs
should have greater national consensus and uniformity in adopting cost-estimating approaches.
It attributes this diversity to factors such as topography, economy, and organizational structures.
The study emphasizes the value of engineering judgment and experience in cost estimation,
demonstrating a preference for skilled planners and engineers over sophisticated mathematical
models. The results highlight the necessity for SHAs to invest substantial funding in planning-
stage cost estimates to be subject to further investigation. The need for disclaimers to direct the
appropriate use of planning cost estimate tables, front-loading resource allocation for cost
estimates, and investigating oversight procedures are among the recommendations for
additional action. Limitations of the study include the limited survey scope, and suggestions are
made for expanding the survey, evaluating existing processes, and exploring the potential
development of new cost estimation models based on project concepts (Turochy et al., 2001).

The AASHTO "Practical Guide to Cost Estimating (2013)" serves as a comprehensive and practical
resource for SHA to develop realistic estimates of project costs, essential for successful program
management (AASHTO, 2013). The AASHTO Technical Committee on Cost Estimating (TCCE)
developed the handbook, filling the area's shortage by combining information gathered from
NCHRP investigations. The guide provides structured approaches for estimators, project
managers, and professionals involved in project development. It is divided into important
estimate techniques (Conceptual, Bid-based, Cost-based, and Risk-based) and cost management
activities (Inflationary considerations, letting strategies, Analysis of contractor bids, and
Performance measures). Nonetheless, the focus needs to concentrate on any potential
drawbacks or difficulties related to the recommended approaches. Recognizing the limitations
and complexities of applying these strategies in various project situations is beneficial for future
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modifications. Furthermore, investigating innovative techniques and recent technology may
improve the guide's relevance in a changing transportation project environment. Nevertheless,
the guide provides valuable insights into cost estimating and management practices, laying a
foundation for further advancements in the field (AASHTO, 2013).

The research conducted by Adel et al., (2016) addresses the critical need for applicable cost
estimating models in the preliminary stages of highway projects. Their parametric model,
allowing the use of a genetically optimized neural network, shows possibilities in conceptual cost
estimation. A graphical user interface improves the model's applicability in practice, and
identifying seven important components highlights the model's depth. However, the study's
shortcomings include its reliance on historical data gathered from completed highway projects
in Egypt between 2003 and 2013, which may limit the model's applicability to various project
contexts and periods. Subjective model components like parameter selection and expert input
may also introduce variability. However, the study substantially contributes to advancing cost
estimation techniques in the early planning phases of highway projects (Adel et al., 2016).

The study by Asmar et al., (2011) presents a statistical methodology that is similar to program
evaluation and review technique (PERT) and shows how well it can estimate construction costs
conceptually. The study, however, fails to note the difficulties associated with highway
incidentals and the limitations in data availability for contingency items. It is suggested that
better data collecting, and a more thorough breakdown of incidentals should improve the
accuracy of cost estimates (Asmar et al., 2011).

Bell & Kaminsky, (1987)’s microcomputer-based method for preliminary cost estimation in
highway construction projects is insightful but has drawbacks. Previous bid data ignores changing
industry dynamics since it makes assumptions about constants in the elements influencing costs.
Furthermore, regional variances, project complexity, and technological improvements may limit
the procedure's applicability. Uncertainty is introduced when material application rates are
based on subjective estimations. Despite these drawbacks, the recommended approach offers a
useful framework for preliminary cost estimation and valuable insights for planning and
budgeting highway construction projects (Bell & Kaminsky, 1987).

With a focus on earthwork, pavement, and traffic control activities, Chou, (2009)'s research
presents an expert system for early-stage cost estimation in Texas roadway construction projects
based on the Generalized Linear Model (GLM). The study aims to enhance the accuracy of
preliminary cost predictions by utilizing statistical models that account for project-specific
characteristics. The proposed expert system offers a platform for ongoing quantity tracking
throughout the project life cycle and considers historical unit prices. Although the methodology
shows potential, there are some drawbacks as well. These include the possible reliance on
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previous bid data, the need for frequent updates as new project data becomes available, and the
excellent use of the developed models to start quantity estimates in other states because of
regional differences and project-specific factors (Chou, 2009).

By proposing a Web-based infrastructure cost estimating method, Chou & O’Connor, (2007)
contribute to preliminary cost estimation in highway construction projects. Utilizing statistical
models integrated into a Web-based relational database management system, the
recommended approach seeks to improve accuracy, decrease variability, and simplify data
storage. Although the study emphasizes users' effective compliance and satisfaction, there may
be some drawbacks because it relies too much on historical district unit prices, which may not
accurately reflect changing market conditions. Beyond the Texas Department of Transportation's
Design and Construction Information System, the system's applicability to various project
settings and areas requires investigation (Chou & O’Connor, 2007).

The quantity-based technique proposed by Chou et al., (2006) improves the preliminary cost
estimation process for highway projects. The researchers emphasize the potential to
differentiate quantity uncertainty from price uncertainty and acknowledge the crucial influence
that preliminary estimates have on project viability. Although the automated estimating method
shows possibilities with features including a comprehensive item-level initial assessment and
monthly updates on unit bid pricing, there could be drawbacks because significant work items
rely on previous data. Additional research is needed to determine whether the suggested
approach can be applied to different project contexts and areas outside the Texas Department
of Transportation. Furthermore, the system's efficiency depends on precise quantity prediction
at the conceptual planning stage, which may be impacted by changing project dynamics (Chou et
al., 2006).

The contributions of Fragkakis et al.,, (2010) to cost estimation approaches for bridge
superstructures address the crucial requirement for accurate estimates at an early stage of the
project. The recommended conceptual cost estimate method incorporates regression analysis
and bootstrap resampling to forecast material quantities and related costs for the three main
bridge deck construction methods. The paper effectively illustrates the models' satisfactory fit
and their application to real-world data; however, there are some potential drawbacks, such as
the method's generalizability to different bridge types and construction contexts, its reliance on
assumptions underlying linear regression, and the requirement for precise input data during the
preliminary study. The study also recognizes that estimations are inherently uncertain and that
although the bootstrap technique reduces this uncertainty, differences in project-specific
variables may cause uncertainties to continue (Fragkakis et al., 2010).
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Gardner et al., (2017) contribute to advancing conceptual cost estimating for highway projects
by introducing a stochastic approach that communicates uncertainty using bootstrap sampling.
The study illustrates how crucial it is to provide estimates with confidence, particularly in the
initial stages of a project when there is a need for more information. With the combination of
artificial neural networks and bootstrap sampling, this proposed stochastic data-driven model
offers a workable approach to generate empirical distributions, allowing a more accurate
depiction of estimate ranges. The study emphasizes the advantages of this method. Still, it also
raises some drawbacks, such as the neural network model's assumptions, the dependence on
historical data, and the necessity of carefully evaluating each project's specific contingencies
because they differ and need an appropriate basis for assessment. Furthermore, additional
research is necessary to determine whether the approach is generalizable to different project
contexts (Gardner et al., 2017).

The study of Gardner et al., (2016) presents a valuable perspective to conceptual cost estimating
by challenging the common belief that more input variables necessarily enhance accuracy.
Specializing in data-driven models with artificial neural networks and multiple-regression
analysis, the work highlights the significance of adopting high-impact/low-effort input variables
for conceptual estimates to be satisfactorily accurate. The research, in collaboration with the
MDT, refutes popular belief. It presents a logical approach to input selection, demonstrating that
adding variables indefinitely after 6—8 decreases returns on model performance. Although the
study's limitations—such as its agency-specific focus—warn against extrapolating the findings to
other agencies, even as it offers valuable insights for MDT. The use of perceptional data for input
variable selection and evaluating how well these findings apply to various highway agencies
represent future research directions (Gardner et al., 2016).

The underutilization of performance measures for highway cost estimating is a significant
contribution Harper et al., (2014) offers to the discipline. The work synthesizes, classifies, and
validates current actions, laying the groundwork for developing procedures and boosting
estimate accuracy in state highway agencies. By identifying primary categories such as
contingency amounts, estimating methods, competition effects, and bidding accuracy, the study
offers valuable information to agencies seeking to create and disseminate new performance
indicators. The research provides room for more study in these areas even though it provides a
thorough list and notes that it focuses on something other than developing new standards or
describing implementation procedures. The results underscore the significance of cost-
estimating performance indicators given the decreasing federal financial assistance and the
increasing number and cost of highway projects (Harper et al., 2014).
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Hollar et al., (2013) provides insightful information when comprehending PE expenses in bridge
projects. Their study tackles a frequently disregarded facet of PE costs and finds that cost
estimates are significantly understated. The study builds statistical models based on project
parameters from North Carolina DOT projects, emphasizing the necessity of employing a
consistent percentage of construction costs for PE calculations. The models provide insightful
information but have drawbacks, such as a 42.7% prediction error and difficulties with precision
in data gathering, which call for standard operating procedures to increase accuracy in
subsequent analyses. The research shows precise PE cost estimates are crucial for adequate
infrastructure funding. Standardized data-gathering procedures and qualitative analysis are also
necessary to overcome discrepancies in PE costs (Hollar et al., 2013).

Karaca et al., (2020) contribute to advancing early cost estimation practices in transportation
infrastructure projects, focusing on top-down models. The study compares the accuracy of
agency estimates with multiple regression and ANN estimates using a dataset of 996 MDT
projects. The results challenge the common wisdom that bigger models always produce better
results, suggesting that top-down models can improve prediction accuracy, particularly for
complicated projects with smaller sample numbers. The study emphasizes the usefulness and
effectiveness of top-down methods while highlighting the significance of finding a balance
between bias and variation in model selection. One of the limitations is the 42.7% prediction
error, which illustrates how difficult it is to accurately estimate the costs of construction projects
because of shifting market pricing and project-specific variables. The study's recommendations
for continued calibration and monitoring emphasize improving early estimation techniques
(Karaca et al., 2020).

Liu et al., (2013) assist with PE cost estimation for road projects to offer SHAs effective budgeting
techniques. Using data from 188 projects in North Carolina, the study challenges the
conventional wisdom that Project-specific ratios, such as 13.3% for widening projects, 7.7% for
rehabilitation, and 16.5% for new location/interchange projects, are revealed by calculating PE
expenses, which are 10% of expected construction costs. Regression models are compared to
historical means by the authors, who advise utilizing the latter for simplicity unless precise
project-specific estimates are required. The limitations include the inability to predict PE duration
and identify the causes of excessive PE cost ratios (Liu et al., 2013).

Petroutsatou et al., (2012) address the challenges of underground uncertainties and hazards in
road tunnel construction cost estimation, particularly during the conception phase. The study
utilizes neural networks particularly multilayer feed-forward and general regression neural
networks to develop cost-estimating models using data from 33 twin tunnels of the Egnatia
Motorway in Greece. The models demonstrate accuracy and robustness for early cost estimates,
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focusing on geology, geometry, and work quantities, and these characteristics render it an
invaluable tool for evaluating alternative and cost-effective solutions in the early phases of tunnel
projects. Nonetheless, significant differences in the geology of various tunnel projects and the
requirement for ongoing model validation with multiple datasets to improve generalizability
could be limited (Petroutsatou et al., 2012).

In exploring construction project cost escalation, Shane et al., (2009) undertake a comprehensive
study, amalgamating insights from literature and interviews with over 20 state highway agencies
to identify and categorize 18 primary factors influencing cost increases. The research emphasizes
how transportation projects have been underestimated historically, especially in the public
sector, where budget overruns affect infrastructure programs. Engineers, estimators, and project
participants can improve cost-estimating accuracy and develop measures to mitigate the
consequences of these escalation variables by utilizing the discovered factors, which are a
valuable resource. The dynamic nature of construction sites, geographical differences, and the
requirement for continual adaptability to changing project dynamics are a few examples of
limitations (Shane et al., 2009).

Below is Table 3 which illustrates the summarizations of the synthesis literature review including
research goal and outcomes.

Table 3. Comprehensive Overview of Studies, Research Goals, and Outcomes

SL Research Goal Research Outcomes Citation
1 Evaluate MDT highway project Proposed recommendations, including cost (Alavi & Tavares,
cost estimating practices. estimation, updated data, a manual, quality 2009)
control, risk capture, inflation management,
and training. Included an implementation
timeline.
2 Improve state highway agencies' Identified the absence of formal unit cost (S. Anderson et al.,
unit cost development practices. adjustment processes, suggesting short-term 2009)
measures and long-term strategies for
improvement.
3 Explore state transportation Identified varied estimation methodologies, (Van Dyke et al.,
agencies' project cost estimation recommended consistent practices, and 2017)
approaches highlighted state-specific tools and
challenges for accurate project cost
estimates.

4 Enhance MDT's early construction | Improved prediction accuracy, identified key (Gransberg et al.,
cost estimates using top-down variables, proposed an Excel tool, and 2017)
estimating and artificial neural suggested future research areas.

networks.
5 Improve NCDOT highway project Developed accurate predictive models and a (Liu et al., 2011)
cost estimation user-friendly interface for preliminary
engineering costs.
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6 Develop strategies, methods, and Eight global strategies, 30 recommended (S. D. Anderson et
tools for effective cost estimation methods, and 90 tools to enhance cost al., 2007)
and management. estimation and management.
7 Enhance state DOT cost estimation | ldentified crucial tips and considerations for (Paulsen et al.,
practices accurate estimates, covering planning, 2008)
scoping, and design phases.
8 Evaluate PACs in transportation PACs are widely used (97% state DOTs), (Skolnik, 2011)
construction. Contractors found PACs beneficial (90%), and
PACs contributed to bid accuracy and market
stability, with suggested improvements.
9 Assess PACs for construction PACs are widely used (90% state DOTs), (Pierce et al., 2012)
materials, emphasizing SCDOT, exhibit regional material preferences, with
focusing on financial and asphalt and fuel most prevalent. Mixed
procedural aspects. responses to steel PACs; recommends
reinforcing steel PAC for SCDOT
10 Evaluate state DOTSs cost Diverse cost estimating methods among (Turochy et al.,
estimating methods for highway state DOTs, relying on engineering judgment. 2001)
projects in the planning stage. Limited use of sophisticated techniques
observed. Recommendations include
studying oversight processes and front-
loading planning-stage cost estimates.
11 | Evaluate and enhance state DOTs' | Provided practical techniques and strategies (AASHTO, 2013)
cost estimating practices for for estimators, project managers, and agency
improved project management. management, covering various cost
estimation methods, inflation
considerations, letting strategies, bid
analysis, and performance measures.
12 Develop a parametric model for Model development, validated by case study, | Adel et al., (2016)
conceptual cost-estimation and practical application.
13 | Develop a reliable methodology to Developed PERT type analysis, reliable (Asmar et al., 2011)
analyze the historical bid data for | estimating methodology with 20% accuracy.
cost estimation
14 Developing a microcomputer- Unit price database, key factors identified, (Bell & Kaminsky,
based cost-estimation and systematic estimation 1987)
15 Develop a generalized linear Identified factors, automated tracking, Chou, (2009)
model-based expert system enhanced TxDOT cost estimation approaches
estimation
16 Develop a web-based system for | Developed web-based system, mitigated cost | Chou & O’Connor,
accurate preliminary cost estimates variability, and improved accuracy (2007)
estimation
17 Develop a quantity-based system Developed automated estimating system Chou et al., (2006)
for preliminary cost estimates. with quantity models, detailed preliminary
estimates
18 | Develop an early and reliable cost Cost estimate method using regression and (Fragkakis et al.,
estimate method for bridge bootstrap, validated, and mitigated 2010)
Construction uncertainty.
19 Develop a stochastic conceptual Data-driven model combining neural (Gardner et al.,
cost estimating model for highway | networks and bootstrap sampling, enabling 2017)
projects. the expression of estimate confidence and
range.
20 Evaluate data-driven models for Optimized accuracy and mitigated data- (Gardner et al.,

cost estimating efficiency.

collection efforts.

2016)
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21

Synthesize and validate
performance measures for cost
estimating.

Foundation for future measures and
potential improvement in estimating
accuracy.

(Harper et al.,
2014)

22

Develop predictive models for PE
cost estimation in bridge projects.

Identified underestimation of bridge PE
costs, proposed predictive model, and
recommended enhanced data collection
procedures.

(Hollar et al., 2013)

23

Evaluate top-down estimating to
enhance budgeting accuracy for
public agencies.

Validated top-down model effectiveness,
identified key variables, highlighted bias-
variance trade-off for prediction accuracy.

(Karaca et al.,
2020).

24

Evaluate strategies for PE cost
estimation in roadway projects.

Identified historical mean PE cost ratios for
project types, compared regression modeling
to historical means, found correlation
between PE cost ratio and PE duration.

(Liu et al., 2013)

25

Develop a neural network-based
system for early cost estimation in
road tunnel construction.

Identified key parameters affecting
construction costs, collected and normalized
real-world data, developed and compared
neural network models (MLFN and GRNN),
and demonstrated accuracy.

(Petroutsatou et al.,
2012)

26

Identify and categorize cost
escalation factors through
literature review and agency
interviews.

Categorized 18 cost escalation factors and
verified through interviews with over 20
transportation agencies. Provided a basis for
developing strategies and tools to enhance
cost estimation.

(Shane et al., 2009)

Table 4 shows the DOT-centric toolset overview from previous studies. Most of the DOTSs utilize
excel based tool to determine the cost estimation. However, few of them used other tools, such
as Estimate and Bid Analysis System (EBASE), Long Range Estimation (LRE), and Microsoft Visual

C++ tools.
Table 4. DOT-Centric Toolset Overview from Previous Studies
SL Literature Type Recommended Tools Citation
for DOT uses
1 | Project Report (Montana DOT) Excel tool (Alavi & Tavares, 2009)

TxDOT-Excel tool
WSDOT-EBASE & Excel
FDOT-LRE

2 Project Report (Texas DOT) UDOT-Excel tool (S. Anderson et al., 2009)

NYSDOT-Excel tool

MnDOT-Excel tool

Caltrans-Excel tool

VDOT-Excel tool

3 Project Report (Kentucky) Excel tool (Van Dyke et al., 2017)
4 | Project Report (Montana DOT) Excel tool (Gransberg et al., 2017)
5 Project Report (NCDOT) Interface Application: (Liu et al., 2011)

Microsoft Visual C++
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3. Survey of State DOTs

This chapter focuses on the preliminary cost estimation techniques used in transportation
projects and provides the results of an extensive survey targeting transportation professionals at
State Departments of Transportation (DOTSs) in the United States. The purpose of the survey is to
learn about the practices, methodologies, tools, and challenges associated with preliminary cost
estimation as it is employed across various states. The survey's methodology and participant
demographics are covered in full in the first section of the chapter. The survey findings are then
explored in detail, indicating the variety of practices employed by DOTs in terms of estimation
methods, data sources, and degrees of satisfaction with the current procedures. It also
emphasizes the types of estimating tools utilized, the procedures applied to contingency cost
estimation, and whether agencies adhere to federally authorized approaches. The survey further
investigates how agencies handle unit costs, inflation, and cost indices, offering insights on
regional influential factors. About 36% of State DOTs responded to the survey, and according to
the survey, there was no federally prescribed preliminary cost estimating approach and the most
common tool was an Excel-based tool. It is clear from the survey responses that there is wide
variation in practices across the various State DOTSs.

Based on the survey of 19 experts from 15 U.S. known and three unknown State DOTs, the
present study contributes valuable insights by highlighting the necessity for standardization
initiatives and addressing discrepancies to enhance the consistency and reliability of preliminary
cost estimation procedures in transportation organizations.

3.1 Survey Methodology

To gain a comprehensive understanding of the preliminary cost estimating approaches employed
by DOTs across the United States, this study conducted an extensive questionnaire survey.
Appendix A includes the survey instrument used in this study for synthesizing practices across
the various state DOTs. The primary goal of the questionnaire survey was to synthesize practices
of other state DOTs in terms of approaches and tools used for developing cost estimates and how
those estimates were used, considering the risks involved. The research methodology included
two sections, which are participant selection, and survey sections.

Participant Selection. The survey was distributed electronically to 50 State DOTs’ Value
Engineering and Estimates Coordinators, Statewide Project Management Specialists, State
Estimating Engineers, Research Implementation Managers, Project Managers, Independent Cost
Estimating Coordinators, Engineering Supervisors, Engineers, Director of Preconstruction,
Contracts and estimates Engineer, Civil Engineer IV, Chief Road Design Engineer, Bidding and
Contract Services Engineer, Assistant State Materials Engineer, and Assistant Director of Planning
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across the United States. Participants were encouraged to provide detailed responses to
maximize the richness of the data collected.

Survey Sections. The survey was distributed through secure online survey platforms, ensuring
data integrity and confidentiality. It consisted of closed-ended and open-ended questions. The
survey questionnaire comprised seven sections, each addressing specific dimensions of
preliminary cost estimating approaches. These sections included participant’s basic information,
agency practices in preliminary cost estimation, contingency and risk management, types of cost
estimates, inflation considerations, collaboration and knowledge sharing, and recommendations
and suggestions.

3.2 Results and Discussion

Nineteen participants from fifteen different state DOTs and three unknown state DOTs in the
United States of America (USA) provided comprehensive responses for this study. Sixty-three
percent of the nineteen complete responders consented to a future follow-up interview. The
location of the respondents is represented graphically in Figure 3. The data indicated that the 18
states that comprised 36% of the total states DOT represented by all survey respondents were
Oklahoma, Wyoming, Missouri, North Carolina, Idaho, Utah, Delaware, Nevada, Kentucky,
Georgia, Michigan, Minnesota, New York, Illinois, South Dakota, and three unknown states that
were not included in the list.

Figure 3. Location of the Participants

Seven SHAs (State Highway Agencies) had a systematic approach, seven did not have a
standardized procedure, one did not respond, and four responded with detailed guidelines to
cost estimation methods among transportation agencies (Figure 4). According to four
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comprehensive responses, the original STIP project estimates were based on SY unit costs and
change as plan sets do. The scoping process and completed studies influenced detailed estimates.
Notably, there's a distinction between long-range planning and Project Development groups in
establishing project costs before advancing onto the STIP, emphasizing the complexity of the
approaches.

No Response [7#7777% |
Depends 7777777777777 4
No 7777777777770 1

Yes 77 7% 1

0 2 4 6 8

Figure 4. Existence of Systematic Method for developing Preliminary Cost Estimation

Responses to the survey regarding agency satisfaction with the initial cost-estimating method
were different. Two respondents were neutral, two were highly satisfied, and six were
moderately satisfied. Remarkably, one respondent expressed dissatisfaction, and eight did not
react, adding uncertainties (Figure 5). This variety brought diverse viewpoints regarding the
effectiveness of the agency's preliminary cost estimation procedure.

10
8
8 -
6 -
4 -
2 2
2 r 1
Somewhat Neither Highly satisfied No Response Somewhat
Satisfied satisfied or dissatisfied
dissatisfied

Figure 5. Existence of Preliminary Cost Estimating Process’s Satisfaction

The majority of respondents (10) to the survey stated that their agency developed its preliminary
cost-estimating approach in-state, either in-house or with a consultant or researcher (Figure 6).
Eight responders, nevertheless, chose not to reply, indicating a lack of interest. One responder
provided an extensive reply that was state-specific but might differ slightly depending on the
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Area, Region, or TSC implementation because there was no set estimating tool and no
requirement for particular Excel formats, which could result in variations in the forms used for
implementation.

12
10
8
6
4
2 1
0 SRR
Developed in-state (i.e., in- No Response Depends / Unsure

house or with support of a
consultant/researcher)

Figure 6. Existence Preliminary Cost Estimating Approaches Developing Process

According to the survey, the majority of the agencies (10 respondents) employed Excel tools for
initial cost estimation (Figure 7). Only one responder mentioned using stand-alone software, and
eight did not answer, indicating a lack of understanding or interest in the issue. The responses
highlighted the general dependence in the surveyed setting on spreadsheet-based techniques
for initial cost estimation.

Stand-alone software
No Response

EXCCI tOOl A _,/_,/_/;% 10

0 2 4 6 8 10 12

Figure 7. Existence Preliminary Cost Estimating Approaches Formation

Figure 8 shows that the agencies utilize a variety of preliminary cost-estimating techniques. One
respondent employed bid-based and cost-based pricing, while six utilize a unit price approach.
Two organizations set prices based on actual high-level quantities. Notably, twelve organizations
chose not to reply, indicating a lack of participation or clarity in their approaches. These
responses demonstrated how different early cost-estimating techniques are in the survey
context.
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Figure 8. Existence Preliminary Cost Estimating Approach

The survey showed different approaches to estimating contingency costs in preliminary
estimates. A proportionate relationship was demonstrated by the eight agencies that used a
percentage of the base estimate (Figure 9). Three agencies use different techniques, highlighting
the unpredictability of the process, and their grading plan estimated usually did not account for
contingency. A percentage-based contingency calculation was included in the initial scoping
estimates; however, as projects moved through the development phase, pay items were used to
calculate updated construction costs. The nature of the project and its location were the main
factors influencing the contingency percentage. Notably, eight agencies chose not to respond,
suggesting a lack of understanding or involvement with this issue.

Other ways
16%

As a percentage of
base estimate
42%

No Response
42%

Figure 9. Contingency Costs Estimated in the Preliminary Cost Estimates

According to the survey, most agencies (11 out of the total) generated a deterministic cost
estimate comprising a set value and a suitable contingency (Figure 10). Notably, eight agencies
chose not to reply, suggesting a lack of understanding or involvement with this issue. These
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revealed a similarity in how the studied agencies approach preliminary cost estimates,
emphasizing fixed value and contingency concerns.

12 11
10 = g
g —
6
4
2
0
A deterministic cost estimate (i.e., a fixed No Response

value plus an appropriate contingency)

Figure 10. Type of Existence Preliminary Cost Estimate Method

The bid history from comparable projects, which captures market trends for the present
circumstances, was the first step in the systematic procedure. The expected cost per unit
computation was derived from historical regression curves for uncommon items and recent data
for often-used products. Construction amounts were added to all bid prices after the bidding,
which were then sorted based on the project's specifications. Then, unit prices were determined
through linear regression. In order to offer current average unit costs internally and externally,
guality assurance teams monitored bid history. Furthermore, bid prices from the three lowest
bidders over the last 24 months could be seen in the quarterly updated Bid History Catalog.

Diverse agency techniques for creating unit costs for cost estimation are depicted in Figure 11.
Eleven organizations emphasized systematic methods and follow a methodical process. On the
other hand, six agencies didn't have a systematic procedure, which suggests possible variability.
Using their bidtabs.net, one agency employed a unit price based on previous data. One agency's
unit cost development procedures were unclear because they did not reply. These showed that
different examined agencies had other methods for creating unit costs in a systematic way for
cost estimation.

12 11
10

SN B N X

Yes No Depends No response

Figure 11. Systematic Process for Developing Unit Costs for Cost Estimating
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According to the survey, agencies' maintained levels of historical unit prices increased
significantly. Ten agencies concentrated at the state level, four at the district level, and four use
alternative approaches, like combining their own data with the state level, working on a specific
project with a particular location, and paying attention to a specific pay item (Figure 12). There
was ambiguity since one agency did not reply. These demonstrated how different survey agencies
manage historical unit costs in different ways.

15
10
10
5
1
0 e
District-level ~ State-level Other No Response

Figure 12. Level of Historical Unit Cost

According to the survey, agencies utilized different methods when estimating project costs to
account for inflation in certain states or regions. Eleven agencies didn't have a structured
strategy, which could lead to variability (Figure 13). On the other hand, five agencies used an
organized approach for this. Two organizations pointed to a reliance on particular elements, such
as the percent-based approach and the lack of a specific formula. Notably, confusion was
introduced by one agency's lack of response. These demonstrated how different the investigated
agencies' methods were when handling inflation issues in project cost estimation. The agency
utilized tools like the Highway Construction Cost Index (HCCI) and a locally developed inflation
calculator to account for inflation in the initial cost estimates. At the bottom of the forecast,
inflation was included in and projected to the expected year of completion. A Composite Cost
Index (CClI) was updated, and an on-staff economist ascertains the current inflation rate. In
addition, they applied a percentage annually based on the project's delivery schedule, using
suggestions from the statewide scoping manual during the yearly call for proposals.

15

11

10

Yes Denends No resnonse 0

Figure 13. Systematic Approach to Account for Inflation Specific to the Region/State
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Figure 14 showed limitations on adopting the Highway Construction Cost Index (HCCI) for
inflation adjustment across agencies at the state or regional levels. Two agencies were working
to develop the tool to track actual bid data, while three agencies currently use HCCI. Interestingly,
thirteen agencies chose not to reply, indicating a lack of understanding or participation regarding
using HCCI for inflation adjustments. These showed that different surveyed agencies had
different policies regarding using HCCI to account for inflation when determining the cost of
constructing new highways.

15

10

Yes No Depends No Response

Figure 14. State-wide or Region-wide Highway Construction Cost Index (HCCI)

According to the survey, agencies had differing opinions about exchanging preliminary cost
estimation tools with other state Departments of Transportation (DOTs). Figure 15 showed that
nine agencies were eager to contribute, three were reluctant, five offer an "other" response that
suggests further considerations, and two remained silent, creating confusion. They employed
AASHTOW software, which differs depending on state configurations, and the study still needed
to be completed. There's no official statewide cost estimating tool, but they could share regional
samples and non-sensitive information with verification. Every district managed its initial
approximation. These highlighted the various strategies the agencies assessed used to share
tools and resources with other state DOTs cooperatively.

No Response Il 2
Others {5
No - [Imw—i——ww. -3
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Figure 15. Distribution of Preliminary Cost Estimation Tools
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3.3 Conclusions and Takeaways

The survey, which included responses from 19 experts in 15 U.S. known and three unknown State
DOTs, clarifies a diverse environment in preliminary cost estimation procedures. Even while Excel
tools and in-state development methodologies are widely used, non-responses in certain areas
and the lack of standard methods indicate intrinsic diversity across the investigated
organizations. Notably, different contingency estimating techniques demonstrate varied
approaches, suggesting a new sophisticated approach to risk management would be useful.
Comparably, agency-wide practices vary in how unit cost development and inflation factors are
handled. The research highlights the need to tackle these discrepancies to improve the
effectiveness and uniformity of preliminary cost estimation procedures in transportation
organizations. Standardization initiatives could lead to a more consistent and dependable
framework, especially regarding tools and methods. The results also point to possible areas for
development, including improved data-sharing procedures, more cooperation, and more precise
rules. These insights provide helpful guidance for improving preliminary cost estimation
procedures and increasing the planning and development of infrastructure projects across
various state agencies more efficiently and reliably.

The main recommendations of the survey are listed below:

e Stress the importance of defining project scope (90%) and managing risks and
contingencies (10%) for accurate estimates.

e Use bid data from the last six months, prioritizing similar quantities, field districts, and
project types for accurate analysis, and acknowledge reliance on historic prices, but
emphasize the complexity of accounting for inflation.

e Use historical unit prices for similar work, adjusting based on current project specifics.

e Utilize recent project bids, consider cost indexes, inflation percentages, and contractor
feedback for insights into market challenges, and seek perspectives from multiple subject
matter experts.

e Recognize the simplicity in estimating construction costs versus challenges in estimating
other expenses like Right of Way and Utilities, and be slightly conservative in estimates,
rounding up for accuracy, especially for less frequently used items.

e Keep individuals engaged in bidding and estimation to anticipate changes and ensure an
effective process and utilize historical databases for research projects.

e Regularly update estimates for accuracy, referencing consistent guidelines, and
considering various funding sources. Include risk evaluations for factors like complex
construction, and use "composite bid items" for preliminary estimates, combining
multiple bid items for 'per mile' costs, updating prices based on recent relevant project
quantities.
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4. HCCI Development

4.1 Methodology

4.1.1 Background of HCCI

The Highway Construction Cost Index (HCCI) is a crucial indicator of the purchasing strength of
highway agencies, as highlighted by Guerrero 2003. It is derived from the actual contract bids
submitted by contractors over a specific timeframe, typically on an annual basis. The calculation
involves unit bid prices and quantities of various items essential for highway construction. Unlike
assessments based on contract completion, the HCCI excludes cost overruns resulting from
unexpected seasonal events, such as flooding. Consequently, it is regarded as a more reliable tool
for assessing overall construction market conditions. State departments of transportation (DOTSs)
have widely adopted the HCCI to monitor inflation in highway construction and to make
reasonably accurate forecasts of the preliminary expenditure required for a highway project, as
noted by Guerrero 2003 and White and Erickson 2011. Furthermore, certain DOTs utilize the HCCI
as an inflationary gauge for preliminary and comprehensive cost evaluations, along with
conducting lifecycle cost analyses (LCCA) for their highway projects. Additionally, HCCls are
recommended as a factor in determining gas tax rates to generate crucial revenue aimed at
effectively maintaining the existing highway infrastructure system, according to (Shrestha et al.
2017).

4.1.2 Data Collection

The research team gathered historical bid data from the SCDOT for three types of projects: bridge
replacements, intersection improvements, and widening. The dataset encompasses bid
information from 380 projects, covering both completed and ongoing projects spanning the years
2013 to 2023, with a cumulative value exceeding $2.1 billion in construction projects. Table 1
illustrates that the team received a substantial number of projects for bridge replacements (130)
and intersection improvements (204), whereas the count for widening projects is notably lower
at 46. Notably, there is only one project in the dataset for intersection improvements in the year
2023. Examining the distribution of projects over the years, the dataset reveals a relatively
limited number of widening projects annually (1, 2, 3, and 5 projects), with no bid data available
for 2021 and 2023. This limited dataset could potentially impact the accuracy of the HCCI, a
concern that is further explored in the calculation results section.
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Table 5. Summary of bid data from SCDOT

Number of projects by category
Year Bridge ' Intersection Widening Total
replacements improvements
2013 14 19 6 39
2014 10 29 13 52
2015 21 37 7 65
2016 10 26 7 43
2017 11 14 2 27
2018 18 21 1 40
2019 7 12 2 21
2020 16 28 5 49
2021 14 8 0 22
2022 9 3 21
2023 0 1 0 1
Total 130 204 46 380

4.1.3 Data Preprocessing

a. Outlier Removal

Before computing the Highway Construction Cost Index (HCCI), it is common practice to apply outlier
removal to the bid item unit price data. This process is undertaken to reduce potential biases by
identifying and excluding outliers from the dataset, as indicated by Jeong et al. 2021. In this project, the
research team utilized two widely employed outlier determination methods, as outlined in (Jeong et al.
2021; Liu et al. 2021):

1. Outliers are those that deviate at least three standard deviations from the mean.

Outliers are considered as values greater than 1.5 times the Interquartile Range (IQR), calculated

as the difference between the third quartile (Q3) and the first quartile (Q1), from Q3 or less than

1.5 times the IQR from Q1.
b. Special Items Removal
Iltems categorized as lump sum (e.g., mobilization) lack precision in representing the amount of work or
materials required. Typically, these items are assigned a fixed quantity of 1, irrespective of the project's
work volume or material quantity. Consequently, the bid prices for these items do not consistently align
with their quantities. Additionally, some items had recorded quantities of 0 or text characters, likely
stemming from input errors. To maintain accuracy and reliability in the analysis, these particular items
were excluded from the calculation of HCCI.

4.1.4 HCCI Calculation

HCCIs are commonly expressed as equations involving bid prices and quantities over a specified
time frame. In this study, the Laspeyres, Paasche, Fisher, and Chained indexing methods were
employed, as these are widely recognized as the most commonly used formulas by State Highway
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Agencies (SHAs) for calculating HCCIs (Shrestha et al. 2017). Given a dataset with m pojects, each
has n work items, the indices are calculated using Equations (1) - (4):

Laspeyres index, L, ,(p°,p%, % q*) = % (1)
i=1Pi 4;
n o piqt

Paasche index, Pt,o(pO,Pt, q%q") = % (2)
Fisher index, F, o(p°, 0%, q% q" ) = /Lo X Py

r.pig? Y. plqf (3)

n 0,0 n 0,t
i=1Pi 9i i=1Pi 4q;

t
Chained index, Cl,, = 1_[ Fir-1 (4)
k=1

where i symbolizes a bid item, p denotes the average unit price, and g stands for quantity. The
subscripts 0 and t designate the base year and the current year, respectively. The average unit
price p of each item i for each year is determined as the weighted average of unit prices based
on quantities, calculated by summing the products of unit prices and corresponding quantities
and then dividing this sum by the total quantity.

m
Zj:l bi j4i,j

5
ity q;,j =)

Average unit price p; =

Laspeyres index is the ratio of the total expenditure in the current period to the total expenditure
in the base period, assuming that the same quantities. Paasche, on the other hand, utilizes the
guantity vector for the current period and assumes it to be the same for the base period. The
Fisher index is calculated as a geometric average of the Laspeyres and Paasche indexes. In this
project, the Fisher index was computed on the annual basic between two consective periods k
and k-1, which was later used for calculating the accumulated chained index for an longer period
(see Eq. 4). The chained index, also known as the chained Fisher index, represents the inflation
rate over a period of t years. The chained index formula is considered the ideal method for
calculating a cost index which is used by FHWA for its NHCCI computation and is recommended
for state DOTs’ HCCI calculation (White and Erickson 2011).

In selecting bid items for the HCCI calculation above, the research team opted for the Dynamic
Iltem Basket (DIB) method instead of the fixed item basket. Traditionally, the fixed item basket
method involves choosing specific crucial bid items to form a consistent basket applied across all
periods, simplifying the calculation process using basic spreadsheet tools. However, this
approach, while convenient, poses a risk of inaccurately capturing changes in market conditions
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due to its reliance on a limited sample. The concept of the Dynamic Item Basket, introduced by
Shrestha et al. 2017 (see Figure 1), aims to overcome the limitations associated with a fixed item
basket. Rather than utilizing a fixed basket with a restricted set of bid items, the DIB method
incorporates all bid items present in consecutive periods for computing the cost indexes. This
inclusive approach allows for a significantly broader range of bid items, enabling HCCls based on
the DIB method to more accurately depict changes in costs within genuine market conditions.

Figure 16. Concept of DIB (Source: Shrestha et al. 2017)

4.1.5 Sub-HCCls

The calculation of HCCI can be performed across the complete historical project database for the
entire state or for specific project groupings. Table 2 illustrates various HCCI types created in this
research. These encompass a statewide HCCI derived from all accessible data, three sub-HCCls
based on contract characteristics, and six sub-HCCls based on bid item characteristics. The
statewide HCCI provides an overview of the overall market conditions in the state, while each
sub-HCCI reflects the pricing trends within a particular group of projects.

To derive sub-HCCls, our research team initially applied specific filtering criteria as detailed in
Table 2, leading to the segmentation of the statewide database into sub-databases. Each of these
sub-databases was then utilized independently to calculate the corresponding sub-HCCls. For
example, when computing sub-HCCls based on varying contract sizes, we divided the statewide
database into three distinct sub-databases representing small, medium, and large contracts.
Subsequent to this segmentation, HCCI calculations were conducted separately for each sub-
database (refer to the section "Contract size-based sub-HCCIs" below). Subsequent sections offer
additional insights into the various sub-HCCls.
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Table 6. Multidimensional HCCls

Data Filtering
Criteria

Statewide None Statewide HCCI

Bridge replacements

Category Sub-HCCI

Project Work Type Intersection improvements

Widening

Small

Contract Characteristics Based HCCI Contract Size Medium

Large
Cluster 1
Scope Cluster 2
Cluster 3
Earthwork

Bases and subbases

Asphalt pavements

Bid Item Characteristics Based HCCI Work Item division Maintenance and control of
traffic

Structures

Incidental construction

a. Contract Characteristics Based Sub-HCCls
Contract characteristics-based sub-HCCls include three types of sub-HCCls, encompassing project
type, scope, and contract size.

¢ Project work type-based sub-HCCls

As indicated in Table 7, the research team gathered bid data for projects falling into three
categories of work: bridge replacements, intersection improvements, and widening. The
resulting database underwent filtration based on project work type criteria, leading to the
creation of sub-databases for the computation of sub-HCCls.
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Table 7. Project distribution based on work type

Number of projects
Year Bridge Intersection Total
replacerients improvements Widening
2013 14 9 - -
2014 10 29 13 -
2015 21 37 - =
2016 10 26 - 13
2017 1 7 > =
2018 18 21 1 20
2019 7 12 5 )
2020 16 o8 - -
2021 14 3 0 o~
2022 9 5 3 o
2023 0 1 0 ;
Total 130 204 46 380

+ Contract size based sub-HCCls

The monetary value of a contract can notably influence the prices of individual items. In this

investigation, contracts were categorized into three groups based on their respective amounts,

as outlined by Jeong et al. 2021: 1) small-sized contracts (below $700,000); 2) mid-sized contracts
($700,000-58,500,000); and 3) large-sized contracts (exceeding $8,500,000).

Table 8 displays the distribution of projects based on contract size. The dataset comprises 380

contracts, totaling $2,105,997,073.58 in overall contract value. Small-sized contracts consist of
58 contracts (15.26%), contributing a total amount of $25,777,476.30 (1.22% of the overall
contract amount). Mid-sized contracts, making up the majority with 266 contracts (70.00%),
represent $701,193,956.55 (33.30% of the total). Large-sized contracts, numbering 56 (14.74%),
possess the highest total value at $1,379,025,640.73 (65.48%). Refer to Table 9 for additional
information on the sample size for each category in each year from 2013 to 2023.

Table 8. Contract size-based-classification

Percentage
Contract N Contract | Percentage Total contract
. Criteria (Dolar
size count (Number) amount

value)

Small-sized <700,000 58 15.26% $25,777,476.30 1.22%
Mid-sized | 700,000<amount<8,500,000 266 70.00% $701,193,956.55 33.30%
Large-sized >8,500,000 56 14.74% $1,379,025,640.73 65.48%
Grand total 380 100.00% | $2,105,997,073.58 | 100.00%
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Table 9. Project distribution based on contract size

Number of projects
Year Small-sized Mid-sized Large-sized | Total
contract contract contract
2013 13 22 4 39
2014 12 32 8 52
2015 9 49 7 65
2016 5 30 8 43
2017 3 23 1 27
2018 6 31 3 40
2019 3 16 2 21
2020 6 35 8 49
2021 0 16 6 22
2022 1 12 8 21
2023 0 0 1 1
Total 58 266 56 380

+* Scope based sub-HCCls

The research team employed a Natural Language Processing (NLP)-based project vectorizing
model, namely CW-TF-IDF (Do et al. 2023), and K-means clustering algorithm to cluster the
projects into subcategories. This approach helps quantify the similarity between projects by
capturing information about both the semantic similarity of pay item descriptions and the cost
contribution. The clustering framework includes three main steps (as shown in 17).

Figure 17. Project clustering framework considering project scope

Step 1: Several NLP techniques were employed to preprocess pay items' description text,
encompassing tokenization (breaking text into smaller units), stop word removal (eliminating
common words like "the," "a"), special character removal (such as numbers or symbols),
lowercasing (converting text to lowercase), and lemmatization (reducing words to their base or
canonical form) (see an example provided in Figure 18).
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Figure 18. Preprocessing pay item description text

Step 2: Cost-Weighted TF-IDF (CW-TF-IDF) was employed to vectorize projects.

Table 10 shows the calculation of components and formation of project vectors.

Table 10. CW-TF-IDF method for project vectorization

Cost-Weighted TF-IDF

amount

ftem (CW-TF-IDF)
Cost
contnbupon of i w100 if Y 100 > B
each pay item to CCij =3¢ Ci
the project 0 otherwise

Term Frequency

npl CC. . . . Dt
Z nt, x L if min_df <% 100 < max_df
=1

t _
(TF) ctfi = N
0 otherwise
Inverse
Document D
caet

Frequency idf* = (1 +log ﬁ)

(IDF)
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np; j
TF x IDF Faidft = S nt o x ol o (14 109 2
cw-tf-idf; = ' n;j X N, X1+ 09 ot
=
Project vector d; = (cw-tf-idf", cw-tf-idf,?, ..., cw-tf-idf;'™)

In the table above, c;;j = the cost of pay item j in the project i; ¢; = the total cost of project i; ccij =
cost contribution of pay item j in the project i; = the minimum percentage threshold; nf,]: the
number of occurrences of term t in pay item j of project i; np; = the number of pay items in the
project i; ccij = cost adjustment factor; N; = the total number of terms in all pay item descriptions
of project i; D' = the number of projects that include term t; D = the total number of projects in
the input dataset; max_df = maximum document frequency that term t occurs; and min_df =
minimum document frequency that term t occurs; m = the dimension of project representation
vectors, which is equal to the vocabulary size of the remaining terms in the entire historical
project dataset.

Step 3: This study used K-means clustering algorithm to cluster projects into groups that contain
similar projects. The project vectors obtained from step 2 were fed as input for this
implementation.

Multiple experiments were carried out by altering the number of clusters. The visual
representations of the clustering strongly suggest that the ideal number of clusters is either 2 or
3, as depicted in Figure 19. This conclusion is drawn from the clearly defined boundaries observed
in these cluster formations. In contrast, when employing 4 clusters, there is noticeable blending
of data points from different clusters, indicating a lack of distinct separation.

(a) = Number of clusters = 2
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(b) = Number of clusters = 3

(c) — Number of clusters =4

Figure 19. Scope-base project clustering results

b. Bid Item Characteristics Based Sub-HCCls

HCCI was also computed for various categories of work items, classified according to the divisions
outlined in the 2007 SCDOT standard specification for highway construction. Consequently, six
sub-HCClIs based on bid item characteristics were identified, encompassing earthwork, bases and
subbases, asphalt pavements, maintenance and control of traffic, structures, and incidental
construction.

4.1.6 HCCI Forecast

To address the absence of data for a specific period, the research team utilized linear regression
and weighted time series analysis methods to create predictive models for HCCI based on
historical data. These models can also serve as tools for forecasting future market conditions,
assisting in the planning and budgeting of upcoming projects.
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a. Linear Regression

In this study, we used linear regression to forecast the Chained index. Linear regression relies on
the premise that the dataset can be adequately approximated by a straight line, often referred
to as the best-fit line. This method assumes that forthcoming values will align within this linear
trajectory. Mathematically, it is represented by a straightforward linear equation, as depicted in
Eqg. (6) below.

Chained HCCl,g = a Xt +e€ (6)

The equation presented predicts a Chained Index HCCl:o for year t. The constants a and € are
determined through the regression analysis of historical data to establish the relationship
between time and HCCI.

b. Weighted Time Series
The Weighted Time Series method assumes that upcoming trends will resemble recent history
more than distant past data. Mathematically expressed as:

t—1;
1 ILXHCCI; ;_
HCCIt,t—l = = t—1 - it (7)

i=1!

Eqg. (7) was used to forecast a Fisher Index HCCl;, +.1 for a forthcoming year, subsequently utilized
to calculate a Chained Fisher Index HCCl: 0. This technique predicts one future year of HCCI. This
forecasted value becomes part of the historical data, enabling continued forecasting of cost
indexes for future years (Jeong et al. 2021).

c. Error Analysis

The efficacy of the forecasting models wre assessed through measures like Mean Absolute
Percentage Error (MAPE) and Root Mean Square Error (RMSE). Both methods involve utilizing a
segment of historical HCCI data to train the model, while the remaining data serve to evaluate
the model's performance. This approach allows for an assessment of how well the model predicts
unseen or future data based on its training. MAPE and RMSE were calculated using Egs. (8) and
(9) respectively, as detailed below.

HCCIi,actual - HCCIi,forecasted
HCCIi,actual

100 n

i=1

?:1(HCCIi,actual - HCCIi,forecasted)2
n

(9)

RMSE =

Indeed, models exhibiting lower MAPE and RMSE values demonstrate a greater accuracy in
forecasting HCCI values. A lower MAPE indicates a smaller average percentage difference
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between actual and forecasted values, while a lower RMSE signifies less variability or dispersion
between the actual and predicted values, ultimately reflecting higher accuracy in the forecasting
models.

4.2 Results

4.2.1. HCCls

This section presents the key results of HCCI calculations for the statewide HCCls and sub-HCCls.
Full tables of the results are presented in Appendix A: South Carolina Highway Construction Cost
Index.

a. Statewide HCCls

The year-over-year Fisher index values, representing the yearly inflation rate, are initially
calculated for two consecutive years before computing the chained indexes, which depict the
accumulated inflation rate over multiple years. lllustrated in Figure 20, the Fisher index exhibited
fluctuations before the pandemic, including a singular deflation period in 2017-2018, with the
highest recorded inflation rate at 1.15. During the pandemic, the index indicated deflation,
marked at 0.83, attributed to the economic disruptions caused by the pandemic. Post-pandemic,
the Fisher index displayed a recovery trend, with the inflation rate surging to 1.37 during 2021-
2022.

Note that there is a notable difference in the number of bid items across periods. Specifically, the
DIB data for the 2022-2023 period contains only 97 bid items, significantly lower compared to
other periods. This discrepancy is primarily due to the presence of bid data for only one project
in the year 2023, which could potentially impact the accuracy of the Fisher index for this duration.
As depicted, the Fisher index for this period experienced a substantial drop when the market
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indicated an increasing trend after the pandemic.

Figure 20. Statewide Fisher index values for adjacent periods (yearly inflation rate)

Figure 21 illustrates the cumulative inflation rates, as represented by the statewide chained index
values, comparing each year to the base year of 2013. Before the pandemic, these values
consistently showed an upward trend, signifying a general increase in costs related to highway
construction projects. During the pandemic, a pronounced decline is evident, with the chained
index dropping to 1.25 in 2020, followed by a modest recovery to 1.30 in 2021. This substantial
decrease indicates a significant reduction in costs associated with highway construction projects
during the pandemic. Post-pandemic, the chained index resumes its upward trajectory,
suggesting a notable rise in construction costs, possibly reflecting changes in market conditions
or economic factors following the crisis.
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Figure 21. Statewide chained index values (Accumulated inflated rate compared to the base
year of 2013)

b. Contract Characteristics-Based HCCls
+* Project type based sub-HCCls
Figure 22 displays the chained HCCl index values for various project types across the period, along
with the corresponding project counts. The chained index values for all project types consistently
demonstrate an upward trajectory, indicating a continual rise in highway construction costs.
Intersection improvements generally exhibited lower inflation rates compared to other project
types. Widening projects consistently showed the highest values. As noted in the data collection
section, the sample size obtained for widening is small, which could potentially affect the
accuracy of HCCls, resulting in anomalous values such as the chained index value of 2.26 derived
from only one project in 2018.

Figure 22. Project type-based sub-HCCls

++» Contract size based sub-HCCls

As depicted in Figure 23, the chained index values for projects of different contract sizes
consistently exhibit an upward trend, indicating a sustained increase in construction cost.
Remarkably, large-sized contracts consistently showcase the highest values compared to the
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other contract sizes, signaling more pronounced inflation within this category. Interestingly,
small-sized mid-sized contracts tended to display a similar trend at comparatively lower inflation

rates.

Figure 23. Contract size based sub-HCCls

+* Scope based sub-HCClIs

As mentioned in the method section, the clustering visualizations strongly indicate that it is
appropriate to divide the project into 2-3 clusters (see Figure 1919). Thus, the research team
calculated and compared the HCCI results for the two options to determine the optimal one.

In Figure 24, the Chained HCCI index is presented with data clustered into two groups. As
illustrated, the HCCI values for both clusters nearly doubled over the past decade. Before the
pandemic, they exhibited a similar trend, with Cluster 2 experiencing a more substantial decline
during the pandemic. However, this cluster managed to recover post-pandemic, reaching a
Chained HCCI of 2 by the end of the year 2023.
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Figure 24. Scope-based sub-HCCls at the number of clusters of 2

Figure 25 depicts the chained index values when the projects were categorized into three groups.
There is a noticeable disparity in the values of Cluster 3 when compared to those of the other
two clusters. Cluster 3 consistently exhibits the highest inflation rates over the past decade, while
Clusters 1 and 2 undergo relatively similar changes during this period. This observation suggests
that it might be more suitable to classify the projects into two categories.
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Figure 25. Scope-based sub-HCCls at the number of clusters of 3

c. Bid Item Characteristics-Based HCCls

This section provides the sub-HCCl values for various bid item divisions over the past 10 years. As
shown in Figure 26, the inflation rate for every division consistently shows an upward trajectory.
Notably, Earthwork repeatedly stands out with the highest chain index value every year, while
the other divisions exhibit comparatively lower inflation rates.
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Figure 26. Work item division-based sub-HCCls

4.2.2. HCCI Forecasting

a. Forecast Error Analysis and HCCI Forecast Method Selection

The historical HCCI data in a certain timeframe was divided into a training dataset and a testing
dataset. For instance, the HCCI data from 2013 to 2016 was employed to establish forecasting
models. Subsequently, these models were utilized to compute HCCI values from 2017 to 2023.
To assess accuracy, the forecasted HCCl values were compared to the actual HCCl values, allowing
for the computation of errors.

Figure 27 and Figure 28 illustrate the influence of altering the historical data timeframe on
forecasting accuracy, specifically in terms of MAPE and RMSE. These figures offer insights into
the connection between the extent of historical information and the accuracy of predictive
models. In both MAPE and RMSE measures, the error tends to diminish with an increase in the
number of years of data utilized. Notably, the linear regression model outperforms the weighted
time series method.

Based on the findings, the research team chose linear regression as the method for predicting
HCCI to address missing data (refer to Table 11). The projected statewide HCCls and sub-HCCls
for the next 15 years (2024-2038) were generated and are outlined in Appendix C: Forecasted
HCCI Values.
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Table 11. HCCI values forecasted using linear regression

Contract Characteristics Based Sub-HCCls
Project work type Scope Contract Size
S . _
2013 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2014 1.12 1.22 1.04 1.20 1.25 1.06 1.37 1.13 1.10 1.17
2015 1.29 1.28 1.13 1.33 1.36 1.22 1.70 1.28 1.21 1.35
2016 1.40 1.43 1.14 1.56 1.50 1.36 1.78 1.34 1.33 1.56
2017 1.52 1.32 1.19 1.68 1.38 1.55 1.95 1.23 1.31 1.67
2018 1.41 1.34 1.22 2.26 1.41 1.38 1.85 1.42 1.33 1.75
2019 1.51 1.43 1.26 1.95 1.52 1.52 1.86 1.57 1.36 2.15
2020 1.25 1.36 1.09 1.41 1.38 1.14 2.27 1.23 1.21 1.62
2021 1.30 1.38 1.12 2.10 1.42 1.24 2.40 1.45 1.39 1.65
2022 1.78 1.90 1.57 221 1.95 1.71 2.54 1.50 1.72 2.33
2023 2.28 1.62 1.65 2.33 1.78 2.19 2.67 1.55 1.67 3.01

*Highlighted values indicate predictions from linear regression

4.3 Comparing South Carolina’s HCCI to the National HCCI

4.3.1. Comparison Approaches

National Highway Construction Index (NHCCI) is a quarterly chained Finisher index designed to
assess the national average fluctuations in highway construction costs over time. The FHWA
relies on information from State web-posted winning bids for highway construction contracts.
The most current NHCCI data can be obtained at https://www.fhwa.dot.gov/policy/otps/nhcci/.
Given that the NHCCI (FHWA 2023) and the statewide HCCI of South Carolina (SCHCCI) in this
project used different base years (2003 and 2013, respectively) for chained index calculation, it

is crucial to adopt a systematic approach for their comparison. According to the guidance of the
FHWA, States and stakeholders must transform the NHCCI into a format that allows for
comparison with other indices. Direct comparisons might be misleading due to variations in
methodologies and base years used by different indices. To accurately compare the NHCCI with
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other indices, it is crucial to convert both into percentage changes (year-over-year change),
providing a more reliable platform for comparison (FHWA 2021). Besides, Liu et al. (2020)
recommended two methods for HCClI comparison, including index trend visualization and
statistical methods.

Additionally, FHWA calculated quarterly NHCCI that captures seasonal effects in the national
market’s conditions. This computation suffers from chain drift bias, especially in cases with
significant seasonal fluctuations. For that reason, to mitigate this bias, experts recommend
relying on the annual HCCI for a more stable and reliable representation of overall market trends
and minimizing the impact of seasonal influences (Liu et al. 2020). When comparing to SCHCCI,
our initial step involved calculating the annual NHCCI by averaging the quarterly NHCCI values for
each fiscal year. This step allowed us to create an annualized representation for comparison
purposes, ensuring a clearer assessment while minimizing the influence of short-term
fluctuations before applying the selected comparison approaches.

a. Year-over-year Change Comparison

The year-over-year change in chained HCCl was used to compare NHCCIl and SCHCCI. It measures
the change in the Chained HCCI from a year to the previous year, reflecting year-over-year
fluctuations. This approach serves as a means to portray yearly market fluctuations effectively,
as calculated in the equation below.

CIt,O - CIt—l,O

year — over — year change, YCy,_y = I
t-1,0

(10)

where Cl is the chained HCCI; the subscripts 0, t-1, and t designate the base year, the previous
year, and the current year, respectively.

b. Chained Index Trend Comparison

The chained index was also used for the comparison purposes. In order to visualize trends for
comparing HCCI, it is essential to standardize NHCCI and SCHCCI indices to a common timeframe
(e.g., from 2013 to 2023). Specifically, we need to establish an NHCCI trend line with 2013 as the
base year, aligning it with the SCHCCI. By computing the year-over-year changes in HCCI for
consecutive periods, we can determine the chained index for this newly defined timeframe, as
outlined in equation (7) below.

tr

Chained index, Cl, o = 1_[(1 +YCpx-1) (11)
k=1

where the subscripts 0 and t’ indicate the new base year (i.e., 2013) and the current year,
respectively.
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c. Statistical method

The research team adopted Kendall’s Tau and Spearman’s rank correlation coefficients to
measure the relationship between NHCCI and SCHCCI. Both Kendall’s Tau and Spearman’s rank
correlation coefficients are non-parametric measures used to assess the strength and direction
of relationships between two variables. They both work well for monotonic relationships and do
not require the variables to follow a specific distribution, making them more robust for non-linear
relationships.

e Kendall’'s Tau correlation coefficient: this coefficient is derived from identifying the
number of concordant and discordant pairs within observed data according to (Kendall
1948) and (Temizhan et al. 2022). The Kendall’'s Tau coefficient value between two
variables, X and Y, is given by equation (8):

_C-D

T n(n-1) (12)

2
where Cis the number of concordant pairs, D is the number of discordant pairs, and n is

T

the number of observations.

This coefficient varies between -1 and +1. The value of 1 indicates a strong positive
association or agreement in rankings between variables. This suggests that an increase in
one variable tends to be associated with an increase in the other variable, preserving their
order. The value of -1 suggests a strong negative association or disagreement in rankings
between variables. An increase in one variable corresponds to a decrease in the other
variable, inversely preserving their order. The value of 0 implies a weak or negligible
association between the rankings of variables. There is little to no consistent relationship
in the ranks of the variables.

e Spearman’s rank correlation coefficient: this coefficient quantifies the strength of a
monotonic relationship between paired data (Fieller and Pearson 1961), computed using
the following equation:

63 d2
n(n?-1)

where di is the difference between the two ranks of each observation.

r=1 (13)

Spearman's rank correlation coefficient also ranges between -1 and 1. The value of 1
indicates a perfect positive monotonic relationship between variables, while the value of
-1 implies a perfect negative monotonic relationship between variables. The value of 0
suggests no monotonic relationship between the variables.
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The strength of correlation can be assessed using the following guideline for the absolute
value of the correlation coefficient (Obilor and Amadi 2018):

e 0 < |correlation coefficient] < 0.4: weak
e 0.4 < |correlation coefficient| < 0.6: moderate
e 0.6 < |correlation coefficient| < 1:strong

To gain insight into the relationship between NHHCI and SCHCCI, the research team also
performed hypothesis tests to examine the equality of NHCCl and SCHCCI. Due to the comparison
setup, the HCCI data from independent groups (Nationwide vs South Carolina) were designed
over the same period (2013-2023) and matched in pairs for each year. Consequently, we
conducted both paired and unpaired tests. The unpaired test focused on assessing the overall
difference between NHCCI and SCHCCI across all individual observations, while the paired test
aimed to uncover the annual discrepancies between NHCCI and SCHCCI. Mann-Whitney U and
Wilcoxon signed-rank tests were adopted to test the null hypothesis that there is no significant
difference between NHCCI and SCHCCI. Mann-Whitney U (Mann and Whitney 1947) test
compares two independent samples, whereas the Wilcoxon signed-rank test (Wilcoxon 1947)
compares two paired samples. These are nonparametric alternatives to the unpaired and paired
Student’s t-tests, respectively. Unlike parametric tests, nonparametric tests do not rely on the
assumption of normal distribution for the samples.

4.3.2. Results

Over the decade-long observations depicted in Figure 29, NHCCI and SCHCCI exhibit distinct
patterns in their year-over-year changes, revealing noteworthy differences. NHCCI shows higher
year-over-year change values for four consecutive periods between 2017 and 2021. Conversely,
SCHCCI indicates higher values for the remaining six consecutive periods. Before the pandemic,
SCHCCI demonstrates notable percent changes from 2013 to 2017 and during 2018-2019,
hovering around 10%, while NHCCI reflects relatively smaller changes, averaging around 5%
annually. During the pandemic in 2020, NHCCI records values around -2%, while SCHCCI registers
notably larger decreases at approximately -10% to -20%. Following the pandemic, both NHCCI
and SCHCCI show significantly increased year-over-year change values compared to pre-
pandemic periods. The broader fluctuation range in SCHCCI may be attributed to its sensitivity to
localized factors, often reacting strongly to local conditions and market downturns. In contrast,
NHCCI, drawing nationwide data, presents a more balanced perspective across states.
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Figure 29. Year-over-year change in chained NHCCI and SCHCCI (19-20: pandemic)

Figure 30 illustrates the chained index values for NHCCI and SCHCCI from 2013 to 2023. SCHCCI
follows a more erratic growth trajectory characterized by greater fluctuations, whereas NHCCI
maintains a steadier, albeit slightly slower, upward trend. Notably, with the exception of the
years 2014, 2020, and 2021, where NHCCI and SCHCCI demonstrate similar values, SCHCCI
consistently exhibits notably higher values in the chained index.

At the onset of the pandemic, specifically from 2019 to 2020, SCHCCI undergoes a significant
decline, reflecting the economic disruptions during that period. In contrast, NHCCI displays a
relatively minor decrease during this phase. Post-pandemic, both NHCCI and SCHCCI depict rapid
increases in their chained index values, indicating a swift rebound following the economic
downturn induced by the pandemic. Overall, the visualization highlights a general alignment
between the trends of SCHCCI and NHCCI, suggesting a parallel direction in their movement.
However, SCHCCI demonstrates a notably wider range of fluctuations compared to NHCCI.
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Figure 30. Trend of NHCCI and SCHCCI (Accumulated inflated rate compared to the base year of
2013)
Figure 31 presents the outcomes of the testing for Kendall’s Tau and Spearman’s rank correlation
coefficients. The findings reveal a correlation between NHCCI and SCHCCI, with Kendall’s Tau
correlation being statistically significant at the 0.05 level, and Spearman’s rank correlation
demonstrating significance at the 0.1 level. Both coefficients, registering values of 0.491 for
Kendall’s Tau and 0.591 for Spearman’s rank, fall within the range of 0.4 to 0.6, indicating a
moderate relationship between NHCCI and SCHCCI.

Figure 31. Results of correlation tests

As depicted in Figure 32, an increase in NHCCI tends to correspond with a rise in SCHCCI. While
the correlation is evident, variations or fluctuations in the pattern may occur due to other
influences or factors affecting the relationship, such as local conditions of SCHCCI or bid data
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used for calculating SCHCCI, making the construction cost in SC inflate at a significantly higher
rate than the national average.
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Figure 32. Monotonic increasing relationship between NHCCI and SCHCCI

Figure 33 displays the outcomes of the Mann-Whitney U and Wilcoxon signed-rank tests. Both
tests produce p-values exceeding 0.05, specifically at 0.28 and 0.386, respectively. Consequently,
we fail to reject the null hypothesis that there is no statistically significant difference between
NHCCI and SCHCCI. In simpler terms, we lack adequate evidence to assert that the HCCI values
statistically differ between Nationwide and South Carolina.
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Figure 33. Results of Mann-Whitney U and Wilcoxon signed-rank tests
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5. Cost Estimating Modeling

The focus of this chapter is to present the approach and results of the multiple modeling efforts
undertaken for cost estimating during both the planning stage and early design stage of
transportation projects. While the target variable is the total project cost, several input variables
were explored for being significant to the project cost. Cost estimating models were separately
developed for widening, bridge replacement, and intersection improvement projects. The
primary modeling approach focused on using the average of the three lowest bidders from the
past projects in each of these project categories for predicting the project cost. A secondary
approach explored the use of just the lowest bidder’s cost from past projects. Finally, two types
of models are proposed; one is a deterministic model where a single project cost is predicted
whereas the other is a probabilistic model where a range for the project cost is predicted with a
distribution. The last stretch of this chapter presents details on an early design-level cost estimate
modeling using unit price prediction for various bid items used in the three project categories
explored in this study. This chapter also presents a brief discussion on the preliminary cost
estimating tool (PCET) that is developed as a project deliverable based on the models described
in this chapter.

5.1 Planning-level cost estimate modeling

Cost estimates developed during the planning phase of a transportation project are derived
based on very few project parameters for which data is available. These estimates are not meant
to be highly accurate but are important for further project planning and budgeting purposes.
Several input parameters are explored to be included in the planning-level cost estimate
modeling in this research. These include: (1) SCDOT district #, (2) Number of project working days,
(3) Year of letting, (4) SCDOT’s HCCI, (5) Project sub-type, (6) Project length (miles), (7) Bridge
length (ft), (8) Average shoulder width, (9) Terrian type, (10) Functional class, (11) Number of
existing lanes, (12) Number of improved lanes, (13) Average side slope, (14) Pavement type, and
(15) Urban/rural. Data may not be available for all these project parameters during the planning
phase, but these parameters were nevertheless explored for their significance on project cost.
Not all this data was readily available with SCDOT or other repositories. A significant effort was
put into gathering as much data as possible for these parameters for all the past projects. The
numbers of past projects of each category included in the model development effort are
presented in Table 12. Total project cost is predicted based on the average of the three lowest
bidders from past projects. The following sections present the results of the models explored in
this study for each of the three project categories.
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Table 12. Modeling database features

Project Category # of Projects in the Database
Bridge Replacement 130
Intersection 204
Improvement
Widening 46

5.1.1 Linear Regression Modeling: Deterministic

Appendix D presents all the individual linear regression models explored with numerous
combinations of input parameters used to predict total cost of widening (Appendix D-1), bridge
replacement (Appendix D-2), and intersection improvement (Appendix D-3) projects. Appendix
D specifically highlights the input parameters considered, model performance (measured using
R?, R%2-adjusted and R?-predicted), and the analysis of variance that indicates the significance of
the input parameters for each model presented. It should be noted that R2-predicted is a key
measure of model’s prediction accuracy and it is important that this measure be as high as
possible to be able to rely on any model for future predictions. “Ave_3bid” parameter in all the
models in Appendix D is the target parameter which is the average cost of the three lowest
bidders. The best performing models for each project category are discussed in the following sub-
sections.

5.1.1.1 Widening projects

The scope of widening projects in the database varied considerably warranting to keep track of
the project sub-types. It was not straightforward to categorize widening projects into different
sub-types, but the proposal description along with the bid items were scrutinized to categorize
them as comprising the scope presented in Table 13.

Table 13. Scope variation in different widening projects

Sub-categories Count of Sub Type

Bridge Extension and Removal 21
Excavation and Pavement Treatment 1
Furnish and Install Wire 2
Intersection Improvement 1
Safety Section Improvement 6
5
5
5

Traffic Control and Clearing
Traffic Signal Improvement
Utility Relocation

Grand Total 46
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As can be seen from Appendix D-1, a total of 10 models were explored using multiple
combinations of input variables. The models presented in Appendix D-1 were iteratively modified
to include those input parameters that are significant to maximize the prediction accuracy (R%-
predicted). There were a few past projects that were identified as outliers which were affecting
the model performance. These projects were deliberately removed from the project database to
ensure higher model accuracy. It should be noted that there could have been unique
circumstances that may have impacted the project costs to be somewhat extreme in these outlier
projects and therefore they were deemed not fit to be used for making cost predictions for future
projects. It is however important to not remove several projects as outliers as the project
category features may be lost resulting in a model that is not suitable for the variety of projects
in a particular project category.

Figure 34 (also Figure 59 in Appendix D-1) presents the best performing model with a R*-
predicted value of 83.76%. The significant input parameters highlighted in Figure 34 include
SCDOT’s HCCI for widening projects, road length, average side slope, average shoulder widened,
and number of improved lanes. While HCCl is separately predicted using the model described in
a previous chapter of this report, data for all other input parameters should be available during
the planning stage of widening projects. A R%-predicted value of ~84% is deemed acceptable for
a planning-level estimate which is not expected to be highly accurate.

Figure 34. Best performing deterministic linear regression model for widening mean bidder price
estimation
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Figure 35. Best performing deterministic linear regression model for widening lowest bidder
price estimation

5.1.1.2 Bridge replacement projects

Similar to the widening projects, bridge replacement projects are also categorized based on
their scope using bid items and proposal description for the past projects. The sub-categories
presented in Table 14 are considered as part of the cost estimate modeling.

Table 14. Sub-categories of bridge replacement projects based on scope and description

Count of Sub

Row Labels Type

Clearing & Grubbing, and Pavement Marking 1

Clearing & Grubbing, and Pavement Marking, and constructcurb and gutter 1

Pavement Marking, Traffic control and construct bike lane 1

Removal and Disposal of Existing Bridge and Construct Concrete Sidewalk 16

Removal and Disposal of Existing Bridge and construct curb and gutter 1
Removal and Disposal of Existing Bridge, clearing and construct curb and

gutter 2

Removal and Disposal of Existing Bridge, Traffic Control 46

Removal and Disposal of structural obstacles and construct curb and gutter 1

Removal & Disposal of existing pavement and construct curb and gutter. 1

Traffic control, and clearing and grubbing 8

Traffic control, and clearing and grubbing, curb, and gutter 4

Traffic control, clearing and grubbing, and curb and gutter 3

Traffic control, clearing and grubbing, construct sidewalk 1

Traffic Control, Clearing, Pipe installing, and Concrete Sidewalk 1

Traffic Control, Clearing, Pipe installing, and Curb and gutter 2

Traffic control, installing pipe, and clearing and grubbing 1
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Traffic control, installing pipe, and clearing and grubbing, construct sidewalk 6
Traffic control, installing pipe, and clearing and grubbing, curb, and gutter 33

Utility Staking and Clearing & Grubbing and Pavement Marking 1
Grand Total 130

As can be seen in Appendix D-2, a total of seven linear regression models were used to iteratively
arrive at a reasonably performing model. Figure 36 (also Figure 67 in Appendix D-2) presents an
acceptably performing regression model after removing five outlier projects with a R?>-predicted
value 71.50%.

Figure 36. Best performing deterministic linear regression model for bridge mean bid price
estimate

5.1.1.3 Intersection improvement projects

Past intersection improvement projects are initially categorized based on the scope from the bid
item data and proposal description. Table 15 presents the different types of scope defined within
all the intersection improvement projects data was made available for. As can be noticed from
Table 15, the majority of the projects are in just four sub-categories, which are isolated and
included in further analysis to make for a more meaningful interpretation of the past project
data. Table 16 presents the refined database that is further analyzed considering just four sub-
categories of intersection improvement projects.
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Table 15. Sub-categories of past intersection improvement projects based on scope

Project Sub-categories # of Projects
Clearing, Traffic Control 1
Removal and disposal of existing pavement, Traffic Control 7
Removal and disposal of existing pavement, Traffic Control 1
Removal and disposal of existing pavement, Traffic Control, Clearing 69
Traffic Control, Clearing 4
Traffic Signal Installation 30
Traffic Signal Installation, Clearing 1
Traffic Signal Installation, Removal and disposal of existing pavement,
Traffic Control 2
Traffic Signal Installation, Removal and disposal of existing pavement,
Traffic Control, Clearing 77
Traffic Signal Installation, Traffic Control 1
Traffic Signal Installation, Traffic Control, Cleaning 11
Grand Total 204

Table 16. Four dominant sub-categories of past intersection improvement projects

Project Sub-categories # of Projects
Removal and disposal of existing pavement, Traffic Control, Clearing 69
Traffic Signal Installation 30
Traffic Signal Installation, Removal and disposal of existing pavement,
Traffic Control, Clearing 77
Traffic Signal Installation, Traffic Control, Cleaning 11
Grand Total 187

Appendix D-3 presents all the individual regression models that were iteratively developed to
predict total projects of intersection improvement projects considering various combinations of
input parameters. A total of 15 models were developed with varying accuracies with the goal of
improving the R%-predicted value of the model by including significant input parameters that
influenced project cost. Figure 37 (also Figure 89 in Appendix D-3) presents the results from the
best performing model with the majority of the input parameters being significant. As can be
seen from Figure 37, a R?-predicted value of about 61.14% was achieved, which is reasonable for
a planning-phase cost estimate.
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Figure 37. Best performing deterministic linear regression model for intersection improvement
project cost estimate prediction

5.1.2 Linear Regression Modeling: Probabilistic

The conventional approach that is still practiced by many SHAs to account for the unknowns is to
add a fixed percentage of base estimate as contingency cost. The downside is that the required
contingency should not be proportional to the project cost, but it should be truly reflective of the
risk involved in the estimate. The conventional approach is criticized by scholars and alternative
approaches were explored (Baccarini, 2006; Gardener et al., 2017). Risk-based estimating
combines traditional estimating for known work items with risk analysis techniques for the
uncertain work items. Monte Carlo simulation approach is a popular technique for risk-based
planning wherein the uncertain input variables (or work items/cost) are assumed to follow a
certain probability distribution (e.g. normal). The output (i.e., project cost) prediction model is
run multiple times (in thousands typically) with different random values each time for the
uncertain input variable to generate a possible range of output values along with the probability
of each result occurring. Examples of project uncertainties at the planning phase include
insufficient right of way knowledge, utilities, environmental mitigation, traffic control challenges,
inflation, and unforeseen events/changes. The downside of Monte Carlo simulation is that
uncertain input variable is assumed to follow a certain probability distribution which may not be
the true case. Another downside is that each uncertainty needs to be specifically identified and
modeled in the simulation which may be challenging to do in the planning phase.

Alternatives to Monte Carlo simulation exist in the literature. For example, Garderner et al.
(2017) successfully employed bootstrap sampling for risk-based estimating of a cost range in the
planning phase. This approach seems highly promising and aptly suitable for this proposed study.
A bootstrap dataset is a subset of original dataset of historic projects identified for the analysis.
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A certain percentage of the original dataset of projects are identified for model building (through
regression or ANNSs) in each iteration to predict a range of project costs as outputs from multiple
iterations combined. Subsequently, probability values can be easily assigned to indicate the
probability (or likelihood) of the project cost to be less than a certain value or to be within a
certain range (see Figure 38). This approach enables establishing the range of project cost to
assign contingencies in a rational manner.

Figure 38. Proposed Statistical Modeling Architecture

Due to the small sample size for widening projects, probabilistic liner regression method was not
used. It was only used for bridge replacement and intersection improvement project categories.

5.1.2.1 Bridge Replacement Projects

Using bootstrap sampling approach with replacement method, 10 random sets with each
comprising 70 bridge replacement projects were identified for modeling building with nine bridge
replacement projects reserved for validation. Only those variables used in the deterministic
model development were used in this task for all the 10 linear regression models. The developed
models are validated by comparing the predicted mean bid price of the nine reserved bridge
projects with their actual price. Figure 39 illustrates that comparison based on all 10
bootstrapped sample models whereas Figure 40 illustrates the same comparison based on top
five performing models. The R2-predicted values for the 10 bootstrapped models varied with an
average value of 47.7%. On the other hand, the average R2-predicted of five models with the
highest accuracy is 73.1%. The mean absolute percentage error (MAPE) is also highlighted in both
these figures. While the MAPE is expectedly high, the prediction trends observed in Figures 39
and 40 are promising. Using the top five performing models (Figure 40) yield better MAPE values
and higher mean prediction accuracy.
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Figure 39. Comparison of actual bid prices of nine bridge projects with mean predicted values
from 10 bootstrapped samples

Figure 40. Comparison of actual bid prices of nine bridge projects with mean predicted values
from five best performing bootstrapped samples

These 10 models were included in the PCET tool for the probabilistic linear regression option. The mean
values predicted in the PCET tool are based on all the 10 bootstrapped models whereas the minimum
and maximum are based on the five best performing models.
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5.1.2.2 Intersection Improvement Projects

Similar to the bridge projects, 14 intersection projects were reserved for validation whereas 10
bootstrapped samples were developed from the rest of the intersection project database for
model building. Figures 41 and 42 illustrate the comparison of the actual mean bid prices vs the
mean predicted bid prices considering all 10 bootstrapped models and top five models,
respectively. The mean prediction accuracy measured using R2-predicted is about 46.6% for all
the 10 models, whereas it is about 58% for five models with highest accuracy. The MAPE values
highlighted in both these figures are not very different.

Figure 41. Comparison of actual bid prices of 14 intersection projects with mean predicted
values from 10 bootstrapped samples

[Piratla and Le] 66



Figure 42. Comparison of actual bid prices of 14 intersection projects with mean predicted
values from five best performing bootstrapped samples

5.1.3 Neural Network Modeling: Deterministic

For this purpose, the datasets for projects require modifications. The reported Excel datasets for
bridge, intersection, and widening projects have some missing data (N/A), removing of which
results in losing a good part of the dataset and, consequently, having unreliable predictive
models. To address this issue, all N/A cells are replaced with the average/mod value of their
column. For instance, from the column “Number of Working days from SCDOT,” blank cells are
replaced with the average of this column. For the column “Number of Improved Lanes,” the blank
cells are replaced with the mod of this column. After addressing the missing data, the dataset is
ready for developing predictive models.

To develop the deterministic model, 80% of the dataset is selected as the training data to develop
the Neural Network model, and the other 20% is selected as testing data to evaluate the accuracy
of the model. Further, a 10-fold cross-validation method is employed to find the best possible
model. In this method, the testing data is divided into ten sections, and nine sections out of 10
are selected each time to develop a model, and the last section is reserved for validation. This
process would be repeated ten times for each of the sections, and in the end, the model with the
highest accuracy would be selected as the developed model using the training data. For the
Neural Network model, one hidden layer with four nodes, sigmoid activation function, and linear
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output is selected. Due to the randomized selection of the training and testing data, each time,
a different model with different weights and accuracy would be reported. To find the optimized
model, 1000 models are developed using 1000 different seeds, and each model’s precision has
been tested using the testing dataset. The model with the highest testing accuracy is selected for
each bootstrapped sample.

5.1.3.1 Widening Projects

The validation results of the deterministic model for the widening projects using testing data are
presented in Figure 43. With eight testing projects, the model has an R? value of 0.94 and a MAPE
of 15%.

Figure 43. Validation for Deterministic Cost Estimation Model for the Widening Projects

5.1.3.2 Bridge Projects

The results of the deterministic model for predicting the mean bid in bridge replacement projects
are demonstrated in Figure 44. This model is capable of predicting the mean bid of bridge
replacement projects with an R accuracy of 0.86 and a MAPE of 5.38%.
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Figure 44. Validation for Deterministic Cost Estimation Model for the Bridge Replacement
Projects

5.1.3.3 Intersection Projects

The validation results of the deterministic model for intersection improvement projects is
presented in Figure 45. The Neural Network model obtained a 0.98 R?- value with a low MAPE of
15.7% for predicting 40 testing data as the validation.

Figure 45. Validation for Deterministic Cost Estimation Model for the Intersection Improvement
Projects

5.1.4 Neural Network Modeling: Probabilistic

In the probabilistic model, ten models are developed to report a range of possible predictions of
expected bids in each project. Initially, 15% of datasets are randomly separated for the final
validation. The validation dataset is used to evaluate the precision of all ten models. From the
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remaining 85% of the dataset, the Bootstrapping method is used to create ten different datasets
called resampled datasets. In bootstrapping, a new dataset is sampled by resampling from the
original dataset, which also involves replacement. 80% of each of these ten models are used to
develop Neural Network models employing 10-fold cross-validation. By selecting different seeds,
as mentioned in the last paragraph, different models for each resampled dataset are developed,
and the one with the highest accuracy is selected for each resampled dataset. In the end, we
have a total of 10 models, which are developed from 10 different resampled datasets and present
the highest accuracy. For the final validation, the 15% validation dataset is utilized.

5.1.4.1 Widening Projects
Figure 46 presents the validation of the probabilistic prediction model using bootstrapping for

widening projects. This model is developed by 10 Neural Network models with high precision. To
calculate the accuracy of these models, R?> and mean absolute percentage error (MAPE) are
reported. As can be seen from the figure, all models have the R? higher than 0.8, and the MAPE
for most models is less than 20%. In three models, despite the high R?, the MAPE is large. The
smaller number of samples for the widening projects has caused this issue. Therefore, the
predicted mean bid prices for widening projects are deemed unreliable.
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Figure 46. Validation for Probabilistic Cost Estimation using Bootstrapping for the Widening
Projects
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5.1.4.2 Bridge Replacement Projects

A probabilistic cost estimate using a bootstrap sampling approach was explored. The accuracy
of the developed models using bootstrapping is presented in Figure 47. The R?- value of all the
models is higher than 0.9, and the MAPE ranges from 1.06% to 24.27%.
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Figure 47. Validation for Probabilistic Cost Estimation using Bootstrapping for the Bridge
Replacement Projects
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5.1.4.3 Intersection Improvement Projects

The models in the probabilistic approach using bootstrapping and Neural Network for the
intersection improvement projects, as illustrated in Figure 48, almost reach the R? testing value
of 1. Additionally, all models have a MAPE lower than 21%.
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Figure 48. Validation for Probabilistic Cost Estimation using Bootstrapping for the Intersection
Improvement Projects
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5.3 Preliminary cost estimating tool (PCET) development

Figure 49 presents a snapshot image of the PCET tool that is developed as a deliverable in this
study. The PCET tool is a user-friendly Microsoft Excel-based computational tool that allows users
to: (1) Select cost estimating method: linear regression, neural network, or average of both, (2)
Select project type: widening, bridge replacement, and intersection improvements, (3) Define
project characteristics as inputs, and (4) Generate either a “Point Cost Estimate” or “Ranged Cost
Estimate” along with model accuracies. The user can enter up to a total of 15 project parameters
as input for running the PCET tool; however, not all the input parameters are used in the cost
estimating models currently embedded in PCET. The input parameters and their possible values
are presented in Table 17.

Figure 49. A snapshot outline of the PCET tool

There are three instructional steps for using the PCET tool, as can be seen from Figure 49. Step-
1 requires the user to select the cost estimate model of their choice. The options include linear
regression, neural network, or the average of both models. Step-1 also requires the user to select
the type of project they would like to develop an estimate for. The options include widening,
bridge replacement, and intersection. Depending on the type of project selected in Step-1,
relevant project characteristics will be shown in the tool. Step-2 requires the user to enter all the
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project characteristics in the gray colored cells either by typing in the values or choosing from
the drop-down options. Users are encouraged to use their best judgement in case some
characteristics are not known at the time of using the tool. It should however be noted that the
accuracy of cost estimates is highly dependent on the accuracy of the project characteristic
inputs. Step-3 requires the user to either run the deterministic point cost estimate model or the
probabilistic ranged cost estimate model by clicking on “Point Cost Estimation” or “Ranged Cost
Estimate Using Bootstrapped Sampling” buttons, respectively. The user could also use these
buttons one after another. Running these models will populate the cost estimate results in the
bottom section of the tool. For the deterministic point cost estimation, a single estimate value is
printed along with the associated accuracy measure. For the probabilistic ranged cost estimation,
average, minimum and maximum estimates are printed along with mean model prediction
accuracy. The user needs to reset the tool by clicking on the “Reset” button before closing the
PCET tool. Resetting will erase all the results.

Table 17. PCET input parameters

Input Parameter Possible values/Description

Project Type e Widening

e Bridge replacement

e |ntersection
Functional Class eSecondary

oSC

e US

e|nterstate
Urban/Rural eUrban

eRural
Estimate Type ePlanning

eEarly design
Project Size #1 o# of added lanes (0, 1, 2, 3, 4, 5, 6)
Project Size #2 eRoad length (miles)
Project Size #3 e Added shoulder width (0ft, 2ft, 4ft, 6ft, 8ft, 10ft, 12ft)
Project Size #4 e Average side slope (0, 1, 2,3,4,5,6, 7, 8,9, 10)
Project Size #5 e Bridge length (miles)
Base Course Type e Brief description
Intermediate Course Type e Brief description
Surface Course Type e Brief description
Project working days e Expected # of working days (days)
Letting Year e Enter expected year of letting
Topography eFlat, rolling, or mountainous
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6. Conclusion, Recommendations, and Implementation

6.1. Conclusions

This research study primarily focused on developing planning level cost estimating models for
three types of transportation projects namely, road widening, bridge replacement, and
intersection improvement projects. Linear regression, artificial neural networks, and
combination of both these approaches were explored to estimate total project cost using few
project size, location, and other features are inputs. Past bid data available in SCDOT’s
repositories was used for developing the cost estimating models in this study. Specifically, bid
prices averaged over three lowest bidders for 46 widening projects, 130 bridge replacement
projects, and 204 intersection improvement projects were collected and used for model building.

Challenges identified early on in this research study include lack of design detail and the need to
base these planning level cost estimates on broad project features, which naturally makes these
estimates somewhat less accurate. Additionally, the occasional need to rapidly produce planning-
level cost estimates is also noted. Attempting to address these challenges, the project goal is to
develop a user-friendly tool namely, preliminary cost estimating tool (PCET), for SCDOT to rapidly
generate planning cost estimates for transportation projects. It is expected that the produced
estimates are not highly accurate but will support budgeting and other planning-level project
goals dependent on cost estimates.

The conclusions of this study are as follows:

1. South Carolina-specific highway construction cost index (SCHCCI) was developed based
on past bid data, and it was found that the general trend matches that of NHCCI, but
SCHCCI exhibited greater fluctuations in some time periods

2. Project size features such as road length, bridge length, expected number of working
days were found to be significant influencers of the total project cost

3. SCHCCI was found to be a significant influencer of total project cost for intersection
projects, but not so for widening and bridge replacement projects

4. Estimating the range of project costs instead of a point estimate is deemed more useful,
and an approach for developing such estimates was developed and validated using
linear regression and artificial neural networks

5. For pointed cost estimates, linear regression resulted in accuracies (measured as R2-
predicted) of 83.76%, 71.5%, and 61.1% for widening, bridge replacement, and
intersection projects, respectively
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6. For pointed cost estimates, artificial neural networks resulted in average accuracies
(measured as R2 of predicted vs. actual) of 94%, 86%, and 98% for widening, bridge
replacement, and intersection projects, respectively

a. For pointed cost estimates, artificial neural networks resulted in average
accuracies (measured as mean absolute percentage error (MAPE)) of 15.36%,
5.38%, and 15.7% for widening, bridge replacement, and intersection projects,
respectively

7. For ranged cost estimates, linear regression produced somewhat erratic results mainly
because of the small sample size

a. Linear regression is excluded as an option for ranged cost estimate modeling

8. For ranged cost estimates of bridge replacement projects, linear regression produced an
average accuracy (measured as R2-predicted) of 47.7% based on 10 bootstrapped
samples and 73.1% based on five best models

9. For ranged cost estimates of intersection projects, linear regression produced an
average accuracy (measured as R2-predicted) of 46.6% based on 10 bootstrapped
samples and 58% based on five best models

10. For ranged cost estimates of widening projects, neural networks produced accuracies
(measured as R2 of predicted vs. actual costs) of over 80% for all 10 bootstrapped
samples; the mean absolute percentage error (MAPE) values have however fluctuated
wildly some being over 100%

a. The relatively poor performance of the developed models for widening projects
is mainly due to the smaller sample size used to build the models; the smaller
sample hasn’t effectively captured the variation that is possible in this project
type

11. For ranged cost estimates of bridge replacement projects, neural networks produced
accuracies (measured as R2 of predicted vs. actual costs) of over of 90% and MAPE
values are in the range of 1%-24% for all 10 bootstrapped samples

12. For ranged cost estimates of intersection projects, neural networks produced accuracies
(measured as R2 of predicted vs. actual costs) of over of 90% and MAPE values are in
the range of 0%-21% for all 10 bootstrapped samples

Further validation using new project data would increase confidence in the PCET tool and its
utility for SCDOT. The bigger takeaway from this study is that total project cost can be
predicted, albeit less accurately in some cases, based on few project characteristics that are
available in the planning stage of a transportation project. One parameter that was found
highly influential and included in most of the developed models is the number of working days;
this parameter need to be reasonably estimated for higher accurate cost estimates. The models
for widening project type have performed poorly compared to other project types mainly
because of the smaller project sample size made available to the research team; therefore,
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widening project estimates need to be cautiously developed and used based on the PCET tool
produced in this study. Another disclaimer is that these planning level estimates are expected
to be less accurate, and therefore should be treated cautiously. In the interest of project
budgeting, some contingency (as a chosen %) may be added to the PCET estimates.

6.2. Recommendations & Implementation Guidance

Based on the findings of this research study, it is recommended that SCDOT adopt and use the
project deliverable —the PCET tool —in a phased approach. In the first phase, the tool need to be
further validated using comparisons with cost estimates developed using SCDOT’s conventional
approach. It is recommended that the three project types — widening, bridge replacement, and
intersection improvements — be included in this phase-1 validation that could span six months to
a year. Phase-1 validation ideally will inform the pre-construction office of the practical merits
and limitations of the PCET tool and assess their preference between linear regression, neural
network, or the combination along with any necessary adjustments (e.g., add 20% contingency)
that may be needed. In phase-2, the PCET tool along with the needed adjustments may be
broadly used across the three project types. In addition, SCHCCI which was developed as part of
this research study may also be used to adjust cost estimates outside of the PCET tool.

The PCET tool is developed in such a way that the embedded cost prediction models can be re-
trained on a need basis as and when additional bid data for the three project times is available.
Therefore, SCDOT is strongly recommended to re-train the PCET tool using the provided
instructions at least once in every 2 years. Updating the models would make future cost estimates
more accurate and informed from recent bid prices.
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Appendix-A: Survey Instrument Used to Synthesize State of

Practice Across Various States

SPR 757: SCDOT’s Survey on Preliminary Cost Estimating Approaches for Transportation

Projects

The purpose of this survey is to solicit inputs on successful preliminary cost estimating

approaches used across the State DOTs along with identifying best practices for developing

regional highway construction cost indices (HCCls). For each State DOT, this survey may be

completed by personnel working in the pre-construction division or other relevant divisions.

This survey has up to 23 guestions with the ability to add comments in addition to your answers

for each question. This survey is estimated to take about 15 minutes to complete. Please contact

Dr. Kalyan Piratla at kpiratl@clemson.edu for any guestions or concerns regarding this survey.

1.

2.

[Piratla and Le]

Participant’s Name:
Participant’s Email:
Participant’s Phone Number:
Participant’s Agency (e.g. South Carolina DOT):

Participant’s Job Title:

Does your agency currently implement a systematic method for developing preliminary cost
estimates in the planning phase of transportation projects?

a.
b.
C.

Yes
No
Depends/Unsure (explain in comments):

If “Yes” or “Depends/Unsure” to Q.6, proceed to Q.7 and if “No,” proceed to Q. 15

7. How satisfied are you with the preliminary cost estimating process at your agency?

a.

L

Highly satisfied

Somewhat satisfied

Neither satisfied or dissatisfied
Somewhat dissatisfied

Highly dissatisfied
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8. Is the preliminary cost estimating approach used by your agency developed in-state or
adopted from federal guidelines?
a. Developed in-state (i.e., in-house or with support of a consultant/researcher)
b. Adopted from federal guidelines.
c. Depends/Unsure (explain in comments):

If “Adopted from federal guidelines” to Q.8, proceed to Q. 9, otherwise to Q. 10

9. Briefly identify the federally-prescribed preliminary cost estimating approach used by
your agency:

10.1s the preliminary cost estimating approach used by your agency in the form of an excel
tool or a stand-alone software?
a. Excel tool
b. Stand-alone software
c. Other (explain in comments):

11.Briefly describe the preliminary cost estimating approach used by your agency (e.g., unit
price, linear regression, machine learning-based).

12.How are contingency costs estimated in the preliminary cost estimates used by your
agency?
a. Asa percentage of base estimate
b. As arisk-based measure related to the specific project
c. Other ways (explain in comments):

If “risk-based measure” is selected for Q. 12, proceed to Q. 13; otherwise to Q. 14

13.What kind of risk-based measure does your agency use for preliminary cost estimates?
(e.g., Monte-carlo)

14.What type of preliminary cost estimate is produced by your agency?
a. A deterministic cost estimate (i.e., a fixed value plus an appropriate contingency)
b. A probabilistic cost estimate (i.e., a distribution of values along with their
probability)
c. Acostrange (i.e., a lower and upper value)
d. Other (explain in comments):
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15.Does your agency have a systematic process for developing unit costs for cost estimating

purposes?
a. Yes
b. No

c. Depends/Unsure (explain in comments):

If “Yes” to Q. 15, proceed to Q. 16; if not, proceed to Q. 17
16. Please describe the systematic process:

17.At what level are the historical unit costs maintained by your agency?
a. State-level
b. District-level
c. County-level
d. Other (explain in comments):

18.Does your agency have a systematic approach to account for inflation specific to the
region/state for various project types?
a. Yes
b. No
c. Depends/Unsure (explain in comments):

If “Yes” or “Depends/Unsure” to Q. 18, proceed to Q. 19; if not, proceed to Q. 21

19.How does your agency account for inflation while developing and using preliminary cost
estimates?

20.Does your agency use a state-wide or region-wide highway construction cost index
(HCCI) to account for inflation?
a. Yes
b. No
c. Depends (explain in comments):

21.Are you able to share the preliminary cost estimating tool(s) along with other relevant tools
and manuals with other state DOTs?
a. Yes
b. No
c. Depends/Unsure (explain in comments):
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22.What recommendations/suggestions do you have for developing accurate preliminary cost
estimates for transportation projects?

23.Would you entertain a brief one-on-one discussion over a phone call as a follow-up to your
survey responses?
a. Yes (If “Yes,” provide the best phone number to reach you at: )
b. No

[Piratla and Le] 90



Appendix B: South Carolina Highway Construction Cost Index

Values of statewide HCCIs and contract characteristics based HCCls

Project work type Scope Contract Size

o § L | cg S o o O | 5O S| 50
58| % |sEcltiol B 2| 2| 2 |EE EZ 2
ST1E |282)PE2 £ | & oz | &5 |mE|fE|&E

B |27 g8 g g g 5 |EE|S2| 528

" e | | 5 | S| S| 5 |”8 7878
2013 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2014 1.12 1.22 1.04 1.20 1.25 1.06 1.37 1.13 1.10 1.17
2015 1.29 1.28 1.13 1.33 1.36 1.22 1.70 1.28 1.21 1.35
2016 1.40 1.43 1.14 1.56 1.50 1.36 1.78 1.34 1.33 1.56
2017 1.52 1.32 1.19 1.68 1.38 1.55 1.95 1.23 131 1.67
2018 141 1.34 1.22 2.26 141 1.38 1.85 1.42 1.33 1.75
2019 1.51 1.43 1.26 1.95 1.52 1.52 1.86 1.57 1.36 2.15
2020 1.25 1.36 1.09 1.41 1.38 1.14 N/A 1.23 1.21 1.62
2021 1.30 1.38 1.12 N/A 1.42 1.24 N/A N/A 1.39 1.65
2022 1.78 1.90 1.57 N/A 1.95 1.71 N/A N/A 1.72 2.33
2023 2.28 N/A 1.65 N/A N/A 2.19 N/A N/A N/A 3.01
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Values of statewide HCCls and bid item characteristics based HCCls

Work item division

O — - T O — O

o O S 9 c O
£ s ] I c T = . = L 8 ¢
£ 0 2 = o 2E S %3 8 g 2
37 g S g 2 g g c 5% 5 T8
© < © QO <€ o 25 O c 5
s £ @ 2 > £ c 2 - 0
: 2 5 | &8 3 5
(8]
2013 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2014 1.12 1.26 1.04 1.06 0.91 1.11 0.97
2015 1.29 1.74 1.22 1.15 1.03 1.30 1.11
2016 1.40 1.90 1.45 1.16 1.01 1.49 1.19
2017 1.52 2.35 1.36 1.24 1.16 1.49 1.24
2018 1.41 2.12 1.44 1.34 1.06 1.59 1.30
2019 1.51 2.43 1.44 1.32 1.20 1.71 1.30
2020 1.25 1.74 1.31 1.13 1.06 1.48 0.98
2021 1.30 1.78 1.47 1.26 1.14 1.65 0.99
2022 1.78 2.86 1.97 1.65 1.42 2.16 1.23
2023 2.28 5.54 2.06 1.82 1.48 2.69 1.48
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Linear Regression Models of Statewide HCCI Using Different Number Of Years Of Historical Data
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Appendix C: Forecasted HCCI Values

Forecasted values of statewide HCCI and contract characteristics based HCCI

S Project work type Scope Contract Size

O n « O = = —_ — — —
§¢] s |23 ge8| 2| T Y| 2 Es|58|%s

i e |EE | 2|5 |3 |3 |%8|78|78
2024 1.86 1.72 1.43 2.34 1.73 1.85 2.74 1.67 1.67 2.68
2025 1.94 1.77 1.48 2.46 1.80 1.92 2.88 1.72 1.73 2.83
2026 2.02 1.83 1.53 2.58 1.86 1.99 3.03 1.76 1.78 2.98
2027 2.10 1.88 1.57 2.70 1.92 2.07 3.18 1.81 1.84 3.12
2028 2.18 1.94 1.62 2.82 1.98 2.14 3.32 1.85 1.89 3.27
2029 2.26 1.99 1.67 2.93 2.04 2.22 3.47 1.89 1.95 3.42
2030 2.34 2.05 1.72 3.05 2.10 2.29 3.61 1.94 2.01 3.57
2031 2.42 2.10 1.77 3.17 2.17 2.36 3.76 1.98 2.06 3.71
2032 2.50 2.16 1.81 3.29 2.23 2.44 3.91 2.03 2.12 3.86
2033 2.58 2.21 1.86 3.41 2.29 2.51 4.05 2.07 2.17 4.01
2034 2.66 2.27 1.91 3.53 2.35 2.59 4.20 2.12 2.23 4.15
2035 2.74 2.33 1.96 3.64 2.41 2.66 4.34 2.16 2.29 4.30
2036 2.82 2.38 2.01 3.76 2.47 2.73 4.49 2.21 2.34 4.45
2037 2.90 2.44 2.05 3.88 2.54 2.81 4.63 2.25 2.40 4.60
2038 2.98 2.49 2.10 4.00 2.60 2.88 4.78 2.30 2.46 4.74
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Forecasted values of statewide HCCI and bid item characteristics-based HCCls

Work item division

S = — O T o — O

2 % § 2 § = % § E § = (:E
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2024 1.86 3.86 2.05 1.59 1.38 2.46 1.33
2025 1.94 4.13 2.13 1.65 1.42 2.59 1.36
2026 2.02 4.39 2.22 1.71 1.47 2.71 1.38
2027 2.10 4.65 2.31 1.77 1.51 2.84 1.40
2028 2.18 4.92 2.39 1.83 1.56 2.97 1.43
2029 2.26 5.18 2.48 1.90 1.60 3.09 1.45
2030 2.34 5.44 2.57 1.96 1.65 3.22 1.48
2031 2.42 5.71 2.65 2.02 1.69 3.35 1.50
2032 2.50 5.97 2.74 2.08 1.74 3.47 1.53
2033 2.58 6.23 2.83 2.15 1.78 3.60 1.55
2034 2.66 6.50 291 2.21 1.83 3.72 1.58
2035 2.74 6.76 3.00 2.27 1.87 3.85 1.60
2036 2.82 7.02 3.09 2.33 1.92 3.98 1.63
2037 2.90 7.28 3.18 2.40 1.96 4.10 1.65
2038 2.98 7.55 3.26 2.46 2.01 4.23 1.67
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Appendix-D: Cost Estimating Model Exploration
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Appendix D-1: Cost Estimate Models for Widening Projects

Figure 50. Widening Cost Estimate Model D-1.1
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Figure 51. Widening Cost Estimate Model D-1.2
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Figure 52. Widening Cost Estimate Model D-1.3

Figure 53. Widening Cost Estimate Model D-1.4

Figure 54. Widening Cost Estimate Model D-1.5
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Figure 55. Widening Cost Estimate Model D-1.6

Figure 56. Widening Cost Estimate Model D-1.7
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Figure 57. Widening Cost Estimate Model D-1.8

101



Figure 58. Widening Cost Estimate Model D-1.9

Figure 59. Widening Cost Estimate Model D-1.10
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Figure 60. Residual plots for the regression model D-1.10
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Appendix D-2: Cost Estimate Models for Bridge Replacement Projects

Figure 61. Bridge Replacement Cost Estimate Model D-2.1

Figure 62. Bridge Replacement Cost Estimate Model D-2.2
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Figure 63. Bridge Replacement Cost Estimate Model D-2.3

Figure 64. Bridge Replacement Cost Estimate Model D-2.4
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Figure 65. Bridge Replacement Cost Estimate Model D-2.5

Figure 66. Bridge Replacement Cost Estimate Model D-2.6
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Figure 67. Bridge Replacement Cost Estimate Model D-2.7

Figure 68. Residual plots for model D-2.7
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Figure 69. Bridge Replacement Cost Estimate Model D-2.8

Figure 70. Residual plots for model D-2.8
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Figure 71. Bridge Replacement Cost Estimate Model D-2.9

Figure 72. Residual plots for model D-2.9
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Appendix D-3: Cost Estimate Models for Intersection Improvement Projects

Figure 73. Intersection Project Cost Estimate Model D-3.1

Figure 74. Intersection Project Cost Estimate Model D-3.2
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Figure 75. Intersection Project Cost Estimate Model D-3.3

Figure 76. Intersection Project Cost Estimate Model D-3.4
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Figure 77. Residual plots for model D-3.4

Figure 78. Intersection Project Cost Estimate Model D-3.5
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Figure 79. Intersection Project Cost Estimate Model D-3.6

Figure 80. Intersection Project Cost Estimate Model D-3.7
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Figure 81. Intersection Project Cost Estimate Model D-3.8

Figure 82. Intersection Project Cost Estimate Model D-3.9
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Figure 83. Intersection Project Cost Estimate Model D-3.10

Figure 84. Intersection Project Cost Estimate Model D-3.11
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Figure 85. Intersection Project Cost Estimate Model D-3.12
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Figure 86. Regression Equations for Model D-3.12
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Figure 87. Intersection Project Cost Estimate Model D-3.13

Figure 88. Intersection Project Cost Estimate Model D-3.14
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Figure 89. Intersection Project Cost Estimate Model D-3.15
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